【題目】(1)如圖①,△ABC中,點(diǎn)D,E在邊BC上,AD平分∠BAC,AE⊥BC,∠B=35°,∠C=65°,求∠DAE的度數(shù);
(2)如圖②,若把(1)中的條件“AE⊥BC“變成“F為DA延長(zhǎng)線上一點(diǎn),FE⊥BC”,其他條件不變,求∠F的度數(shù).
【答案】(1)15°;(2)15°
【解析】
(1)先根據(jù)三角形內(nèi)角和求得∠BAC的度數(shù),再根據(jù)AD平分∠BAC,AE⊥BC,求得∠BAE,∠BAD的度數(shù),最后根據(jù)∠DAE=∠BAE-∠BAD計(jì)算即可;
(2)先作AH⊥BC于H,再根據(jù)平行線的性質(zhì)求得∠DFE的度數(shù)
(1)∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°
∵AD平分∠BAC,
∴∠BAD=∠BAC=40°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠BAE=90°﹣∠B=55°,
∴∠DAE=∠BAE﹣∠BAD=55°﹣40°=15°;
(2)作AH⊥BC于H,如圖②,
由(1)可得∠DAH=15°,
∵FE⊥BC,
∴AH∥EF,
∴∠DFE=∠DAH=15°;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:京張高鐵是一條連接北京市與河北省張家口市的城際鐵路.2019年底,京張高鐵正式開(kāi)通,京張高鐵是我國(guó)“八縱八橫”高鐵網(wǎng)的重要組成部分,也是2022年北京冬奧會(huì)重要的交通保障設(shè)施.已知該高鐵全長(zhǎng)約180千米,按照設(shè)計(jì),京張高鐵列車的平均行駛速度是普通快車的3倍,全程用時(shí)比普通快車少用1個(gè)小時(shí),求京張高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形為正方形,點(diǎn)為線段上一點(diǎn),連接,過(guò)點(diǎn)作,交射線于點(diǎn),以、為鄰邊作矩形,連接.
如圖,求證:矩形是正方形;
若,,求的長(zhǎng)度;
當(dāng)線段與正方形的某條邊的夾角是時(shí),直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的一個(gè)內(nèi)接三角形,點(diǎn)是劣弧上一點(diǎn)(點(diǎn)不與,重合),設(shè),.
當(dāng)時(shí),求的度數(shù);
猜想與之間的關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=50°,∠B=∠C,點(diǎn)D,E,F分別在邊BC,CA,AB上,且滿足BF=CD,BD=CE,∠BFD=30°,則∠FDE的度數(shù)為( 。
A.75°B.80°C.65°D.95°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“三農(nóng)”問(wèn)題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計(jì)圖.依據(jù)統(tǒng)計(jì)圖得出的以下四個(gè)結(jié)論正確的是( 。
A. ①的收入去年和前年相同
B. ③的收入所占比例前年的比去年的大
C. 去年②的收入為2.8萬(wàn)
D. 前年年收入不止①②③三種農(nóng)作物的收入
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí),圖中,分別表示甲、乙兩人前往目的地所走的路程s(千米)隨時(shí)間t(分)變化的函數(shù)圖象,以下說(shuō)法:①甲比乙提前12分到達(dá);②甲的平均速度為15千米/時(shí);③甲乙相遇時(shí),乙走了6千米;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC中,點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上,且BE=CD,EP∥AC交直線CD于點(diǎn)P,交直線AB于點(diǎn)F,∠ADP=∠ACB.
(1)圖1中是否存在與AC相等的線段?若存在,請(qǐng)找出,并加以證明,若不存在,說(shuō)明理由;
(2)若將“點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上”改為“點(diǎn)D在線段BA延長(zhǎng)線上,點(diǎn)E在線段BC延長(zhǎng)線上”,其他條件不變(如圖2).當(dāng)∠ABC=90°,∠BAC=60°,AB=2時(shí),求線段PE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com