【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.
(1)OM的長等于_______;
(2)當(dāng)點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的.
【答案】(1)4;(2)見解析;
【解析】
解:(1)由勾股定理可得OM的長度
(2)取格點 F , E, 連接 EF , 得到點 N ,取格點S, T, 連接ST, 得到點R, 連接NR交OM于P,則點P即為所求。
(1)OM==4;
故答案為4.
(2)以點O為原點建立直角坐標(biāo)系,則A(1,0),B(4,0),設(shè)P(a,a),(0≤a≤4),
∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
∴PA2+PB2=4(a﹣)2+,
∵0≤a≤4,
∴當(dāng)a=時,PA2+PB2 取得最小值,
綜上,需作出點P滿足線段OP的長=;
取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,
則點P即為所求.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)若△ABC和△A1B1C1關(guān)于原點O成中心對稱圖形,畫出△A1B1C1;
(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2;
(3)在x軸上存在一點P,滿足點P到點B1與點C1距離之和最小,請直接寫出P B1+ P C1的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開住乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),兩車距甲地的距離y(千米)與行駛時間式(小時)之間的函數(shù)圖象如圖所示,則下列說法中錯誤的是( 。
A. 客車比出租車晚4小時到達目的地B. 客車速度為60千米時,出租車速度為100千米/時
C. 兩車出發(fā)后3.75小時相遇D. 兩車相遇時客車距乙地還有225千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片放入平面直角坐標(biāo)系中,使分別落在軸的的正半軸上,連接,且,.
(1)求點的坐標(biāo);
(2)將紙片折疊,使點與點重合(折痕為),求折疊后紙片重疊部分的面積;
(3)求所在直線的函數(shù)表達式,并求出對角線與折痕交點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.
(Ⅰ)如圖①,當(dāng)∠BOP=300時,求點P的坐標(biāo);
(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點C′恰好落在邊OA上時,求點P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com