【題目】計算題
(1) - 6 - 7 – 8
(2)6- 3.3- (-6) -(-3) 4 3.3
(3)
(4)
(5)
(6)
【答案】(1)-21;(2)20;(3);(4);(5)-12;(6)-2.
【解析】
(1)根據(jù)有理數(shù)的減法法則計算即可;(2)根據(jù)有理數(shù)的加減法法則計算即可;(3)根據(jù)有理數(shù)的加減法法則計算即可;(4)根據(jù)有理數(shù)的乘除法法則計算即可;(5)根據(jù)有理數(shù)的混合運算法則及運算順序依次計算即可;(6)根據(jù)有理數(shù)的混合運算法則及運算順序依次計算即可.
(1) - 6 - 7 – 8
=-(6+7+8)
=-21;
(2)6- 3.3- (-6) -(-3) 4 3.3
=6- 3.3+6+3 4 3.3
=6+3 3.3- 3.3+6 4
=10+0+10
=20;
(3)
=
=
=
=;
(4)
=
=;
(5)
=
=
=
=-12;
(6)
=
=
=
=
=-1-1
=-2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市收府關(guān)于”垃圾不落地·市區(qū)更美麗”的主題宣傳活動,某校隨機調(diào)查了部分學(xué)生對垃圾分類知識的掌握情況.調(diào)查選項分為“A:非常了解,B:比較了解C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:
(1)把兩幅統(tǒng)計圖補充完整;
(2)若該校學(xué)生數(shù)1000名,根據(jù)調(diào)查結(jié)果,估計該校“非常了解”與“比較了解”的學(xué)生共有________名;
(3)已知“非常了解”的4名男生和1名女生,從中隨機抽取2名向全校做垃圾分類的知識交流,請用畫樹狀圖或列表的方法,求恰好抽到1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某專賣店正在開展“感恩十年,童行有你”促銷活動一次性購物不超過元不享受優(yōu)惠;一次性購物超過元但不超過元,超過元的部分九折優(yōu)惠;一次性購物超過元一律八折.在活動期間,張三兩次購物分別付款元、元,若張三選擇這兩次購物合并成一次性付款可以節(jié)省___________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+分別與x軸、y軸交于A、B兩點,⊙E經(jīng)過原點O及A、B兩點,C是⊙E上一點,連接BC交OA于點D,∠COD=∠CBO.
(1)求A、B、C三點坐標(biāo);
(2)求經(jīng)過O、C、A三點的拋物線解析式;
(3)直線AB上是否存在點P,使得△COP的周長最?若存在,請求出P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】、、三地依次在同一直線上,,兩地相距千米,甲、乙兩車分別從,兩地同時出發(fā),相向勻速行駛。行駛小時兩車相遇,再經(jīng)過小時,甲車到達(dá)地,然后立即調(diào)頭,并將速度提高后與乙車同向行駛,經(jīng)過一段時間后兩車同時到達(dá)地,則,兩地相距_____________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市第八中學(xué)校為給學(xué)生營造良好舒適的休息環(huán)境,決定改造校園內(nèi)的—小花園,如圖是該花園的平面示意圖,它是由個正方形拼成的長方形用以種植六種不同的植物,已知中間最小的正方形的邊長是米,正方形、邊長相等.請根據(jù)圖形特點求出該花園的總面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底部未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分周長和是_________(用代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點E、F、G、H分別是四邊形ABCD四條邊的中點,若EFGH為菱形,則四邊形應(yīng)具備的下列條件中,不正確的個數(shù)是( 。
①一組對邊平行而另一組對邊不平行; ②對角線互相平分;③對角線互相垂直;④對角線相等
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣1,﹣3),C(3,n),交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)y=和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC.求△AOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com