【題目】如圖,∴P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長BP交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設(shè)線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x=6時,求線段FG的長.
【答案】解:(1)證明:∵四邊形ABCD是菱形,∴AB=AD,AC平分∠DAB。∠DAP=∠BAP。
∵在△APB和△APD中,,
∴△APB≌△APD(SAS)。
(2)①∵四邊形ABCD是菱形,∴AD∥BC,AD=BC。
∴△AFP∽△CBP。∴。
∵DF:FA=1:2,∴AF:BC=3:3。∴。
由(1)知,PB=PD=x,又∵PF=y,∴。
∴,即y與x的函數(shù)關(guān)系式為。
②當(dāng)x=6時,,∴。
∵DG∥AB,∴△DFG∽△AFB。∴。∴。
∴,即線段FG的長為5。
【解析】
試題(1)由菱形的性質(zhì)得到AB=AD,∠DAP=∠BAP,加上公共邊AP=AP,根據(jù)SAS即可證得結(jié)論。
(2)①由△AFP∽△CBP列比例式即可得到y與x的函數(shù)關(guān)系式。
②由函數(shù)關(guān)系式求得PF的長,從而得到FB的長,由△DFG∽△AFB列比例式即可得到線段FG的長。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是邊長為3的等邊三角形,以BC為底邊作一個頂角為120等腰△BDC.點M、點N分別是AB邊與AC邊上的點,并且滿足∠MDN=60
(1)如圖1,當(dāng)點D在△ABC外部時,求證:BM+CN=MN;
(2)當(dāng)點D在△ABC內(nèi)部時,其它條件不變,請在圖2中補全圖形,并直接寫出△AMN的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個質(zhì)地均勻的正方體骰子的六個面上分別刻有1到6的點數(shù).將骰子拋擲兩次,擲第一次,將朝上一面的點數(shù)記為,擲第二次,將朝上一面的點數(shù)記為,則點()落在直線上的概率為:
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的一種健身產(chǎn)品在市場上受到普遍歡迎,每年可在國內(nèi)、國外市場上全部售完,該公司的年產(chǎn)量為6千件,若在國內(nèi)市場銷售,平均每件產(chǎn)品的利潤(元)與國內(nèi)銷售數(shù)量(千件)的關(guān)系為:若在國外銷售,平均每件產(chǎn)品的利潤(元)與國外的銷售數(shù)量t(千件)的關(guān)系為:
(1)用的代數(shù)式表示t為:t= ;當(dāng)0<≤4時,與的函數(shù)關(guān)系式為:= ;當(dāng)4≤< 時,=100;
(2)求每年該公司銷售這種健身產(chǎn)品的總利潤W(千元)與國內(nèi)的銷售數(shù)量x(千件)的函數(shù)關(guān)系式,并指出x的取值范圍;
(3)該公司每年國內(nèi)、國外的銷量各為多少時,可使公司每年的總利潤最大?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(-5,1),B(-1,1),C(-4,3).
(1)若△A1B1C1與△ABC關(guān)于y軸對稱,點A,B,C的對應(yīng)點分別為A1,B1,C1,請畫出△A1B1C1并寫出A1,B1,C1的坐標(biāo);
(2)若點P為平面內(nèi)不與C重合的一點,△PAB與△ABC全等,請寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60 ℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計算的時間為x(min).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達(dá)到60 ℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時,y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP平分∠ABC,D為BP上一點,E,F分別在BA,BC上,且滿足DE=DF,若∠BED=140°,則∠BFD的度數(shù)是( 。
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(0,2),△AOB為等邊三角形,P是x軸上一個動點(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點B的坐標(biāo);
(2)在點P的運動過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大。蝗绺淖,請說明理由.
(3)連接OQ,當(dāng)OQ∥AB時,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高,E、F分別是AB、AC的中點。
(1)AB=12,AC=10,求四邊形AEDF的周長;
(2)EF與AD有怎樣的位置關(guān)系?證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com