【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為 .
【答案】(2,4)或(3,4)或(8,4)
【解析】解:當OD=PD(P在右邊)時,根據題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD= OA=5,
根據勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,則P1(8,4);
當PD=OD(P在左邊)時,根據題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,
根據勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,則P2(2,4);
當PO=OD時,根據題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根據勾股定理得:OQ=3,則P3(3,4),
綜上,滿足題意的P坐標為(2,4)或(3,4)或(8,4).
故答案為:(2,4)或(3,4)或(8,4)
分PD=OD(P在右邊),PD=OD(P在左邊),OP=OD三種情況,根據題意畫出圖形,作PQ垂直于x軸,找出直角三角形,根據勾股定理求出OQ,然后根據圖形寫出P的坐標即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y= x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1 , 過點B1作直線l的垂線交y軸于點A2;…按此作法繼續(xù)下去,則點A2015的坐標為( )
A.(0,42015)
B.(0,42014)
C.(0,32015)
D.(0,32014)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,點B和點C分別是x軸的正半軸和y軸的正半軸上的兩點,且OB:BC=1:,直線BC的解析式為y=﹣kx+6k(k≠0).
(1)如圖1,求點C的坐標;
(2)如圖2,點D為OB中點,點E為OC中點,點F在y軸的負半軸上,點A是射線FD上的第一象限的點,連接AE、ED,若FD=DA,且S△AED=,求點A的坐標;
(3)如圖3,在(2)的條件下,點P在線段OB上,點Q在線段OC的延長線上,CQ=BP,連接PQ與BC交于點M,連接AM并延長AM到點N,連接QN、AP、AB和NP,若∠QPA﹣∠NQO=∠NQP﹣∠PAB,NP=2,求直線PQ的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市政府要求武漢輕軌二七路段工程12個月完工,F(xiàn)由甲、乙兩工程隊參與施工,已知甲隊單獨完成需要16個月,每月需費用600萬元;乙隊單獨完成需要24個月,每月需費用400萬元。由于前期工程路面較寬,可由甲、乙兩隊共同施工。隨著工程的進行,路面變窄,兩隊再同時施工,對交通影響較大,為了減小對解放大道的交通秩序的影響,后期只能由一個工程隊施工.工程總指揮部結合實際情況現(xiàn)擬定兩套工程方案:
①先由甲、乙兩個工程隊合做m個月后,再由甲隊單獨施工,保證恰好按時完成.
②先由甲、乙兩個工程隊合做n個月后,再由乙隊單獨施工,也保證恰好按時完成.
⑴求兩套方案中m和n的值;
⑵通過計算,并結合施工費用及施工對交通的影響,你認為該工程總指揮部應該選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在等腰梯形ABCD中,AD//BC,∠BDC=∠BCD,點E是線段BD上一點,且BE=AD.
(1)證明:△ADB≌△EBC;
(2)直接寫出圖中所有的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃組織全校1441名師生到相關部門規(guī)劃的林區(qū)植樹,經過研究,決定租用當?shù)刈廛嚬疽还?/span>62輛兩種型號客車作為交通工具.
下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:
型號 | 載客量 | 租金單價 |
30人/輛 | 380元/輛 | |
20人/輛 | 280元/輛 |
注:載客量指的是每輛客車最多可載該校師生的人數(shù).設學校租用型號客車輛,租車總費用為元.
(1)求與的函數(shù)解析式,請直接寫出的取值范圍;
(2)若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最省?最省的總費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角梯形ABCD中,AB//DC,∠DAB=90°,AD=2DC=4,AB=6.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C﹣D﹣A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線l//AD,與線段CD的交點為E,與折線A﹣C﹣B的交點為Q.點M運動的時間為t(秒).
(1)當t=0.5時,求線段QM的長;
(2)當0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當t>2時,連接PQ交線段AC于點R.請?zhí)骄? 是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O.
(1)求證:△ABO≌△DCO;
(2)△OBC是何種三角形?證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com