【題目】如圖,在△ABC中,AB=AC,點D、E分別在BC、AB上,且∠BDE=∠CAD.求證:△ADE∽△ABD.
【答案】證明:∵AB=AC, ∴∠B=∠C,
∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,
∴∠ADE=∠C,
∴∠B=∠ADE,
∵∠DAE=∠BAD,
∴△ADE∽△ABD
【解析】由等腰三角形的性質得出∠B=∠C,由三角形的外角性質和已知條件得出∠ADE=∠C,因此∠B=∠ADE,再由公共角∠DAE=∠BAD,即可得出△ADE∽△ABD.
【考點精析】掌握相似三角形的判定是解答本題的根本,需要知道相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS).
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,反比例函數y= 的圖象與一次函數y=k(x﹣2)的圖象交點為A(3,2),B(x,y).
(1)求反比例函數與一次函數的解析式及B點坐標;
(2)若C是y軸上的點,且滿足△ABC的面積為10,求C點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了經濟發(fā)展的需要,某市2014年投入科研經費500萬元,2016年投入科研經費720萬元.
(1)求2014至2016年該市投入科研經費的年平均增長率;
(2)根據目前經濟發(fā)展的實際情況,該市計劃2017年投入的科研經費比2016年有所增加,但年增長率不超過15%,假定該市計劃2017年投入的科研經費為a萬元,請求出a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標有數字1、2、3的小球,乙口袋中裝有分別標有數字4、5的小球,它們的形狀、大小完全相同,現隨機從甲口袋中摸出一個小球記下數字,再從乙口袋中摸出一個小球記下數字.請用列表或樹狀圖的方法(只選其中一種)求出兩個數字之和能被3整除的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內部,且恰好平分∠BOC,設ON的反向延長線為OD,則∠COD= °,∠AOD= °.
(2)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內部,求∠AOM﹣∠NOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場購進一種單價為40元的書包,如果以單價50元出售,那么每月可售出30個,根據銷售經驗,售價每提高5元,銷售量相應減少1個.
(1)請寫出銷售單價提高x元與總的銷售利潤y元之間的函數關系式;
(2)如果你是經理,為使每月的銷售利潤最大,那么你確定這種書包的單價為多少元?此時,最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家客廳里裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小明按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.
(1)若小明任意按下一個開關,則下列說法正確的是( )
A.小明打開的一定是樓梯燈;
B.小明打開的可能是臥室燈;
C.小明打開的不可能是客廳燈;
D.小明打開走廊燈的概率是
(2)若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖法或列表法加以說明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com