【題目】腰長(zhǎng)為x,底邊長(zhǎng)為y的等腰三角形的周長(zhǎng)為12,則yx的函數(shù)表達(dá)式為____________,自變量x的取值范圍為____________

【答案】 y=-2x+12 3<x<6

【解析】

根據(jù)周長(zhǎng)公式即可得到xy之間的等式,變形即可得到yx之間的函數(shù)關(guān)系.利用三角形的邊長(zhǎng)是正數(shù)和兩邊和大于第三邊求得自變量的取值范圍.

∵2x+y=12

∴y=-2x+12

∵x>6÷2=3,y<2x

∴3<x<6

即腰長(zhǎng)y與底邊x的函數(shù)關(guān)系是:y=-2x+12(3<x<6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A(1,2)先向右平移2個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是(  )

A. (3,3) B. (-1,3) C. (-1,-1) D. (3,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),三條不同的直線a、bc,若ac,bc,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)A﹣1,2),則正比例函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小慧兩位同學(xué)在數(shù)學(xué)活動(dòng)課中,把長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙條粘合起來(lái),小明按如圖甲所示的方法粘合起來(lái)得到長(zhǎng)方形ABCD,粘合部分的長(zhǎng)度為6cm,小慧按如圖乙所示的方法粘合起來(lái)得到長(zhǎng)方形A1B1C1D1,黏合部分的長(zhǎng)度為4cm.若長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙條共有100張,則小明應(yīng)分配到 張長(zhǎng)方形白紙條,才能使小明和小慧按各自要求黏合起來(lái)的長(zhǎng)方形面積相等(要求100張長(zhǎng)方形白紙條全部用完).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各式:
(1) +( ﹣1)0
(2)a2 +3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線,與x軸、y軸分別交于點(diǎn)A、C,以AC為對(duì)角線作矩形OABC,點(diǎn)P、Q分別為射線OC、射線AC上的動(dòng)點(diǎn),且有AQ=2CP, 連結(jié)PQ,設(shè)點(diǎn)P的坐標(biāo)為P(0,t).

(1)求點(diǎn)B的坐標(biāo).

(2)若t=1時(shí),連接BQ,求△ABQ的面積.

(3)如圖2,以PQ為直徑作⊙I,記⊙I與射線AC的另一個(gè)交點(diǎn)為E.

① 若,求此時(shí)t的值.

② 若圓心I在△ABC內(nèi)部(不包含邊上),則此時(shí)t的取值范圍為 .(直接寫出答案)

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3,以頂點(diǎn)A為原點(diǎn),且有一組鄰邊與坐標(biāo)軸重合,求出正方形ABCD各個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+c與y軸交于點(diǎn)C(0,-4),與x軸交于A、B,且點(diǎn)B的坐標(biāo)為(2,0).

(1)求該拋物線的解析式;

(2) 若點(diǎn)P是AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;

(3) 若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD是等腰三角形,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案