【題目】如圖,拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求ΔABC的面積。
【答案】(1) ;(2)8.
【解析】試題分析:(1)在矩形OCEF中,已知OF、EF的長,即可得點(diǎn)C、E的坐標(biāo),然后利用待定系數(shù)法求函數(shù)的解析式即可;(2)根據(jù)(1)的函數(shù)解析式求出A、B、D三點(diǎn)的坐標(biāo),以AB為底、D點(diǎn)縱坐標(biāo)的絕對值為高,可求出△ABD的面積.
試題解析:(1)∵四邊形OCEF為矩形,OF=2,EF=3,
∴點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)E的坐標(biāo)為(2,3).
把x=0,y=3;x=2,y=3分別代入y=-x2+bx+c中,得
,
解得,
∴拋物線所對應(yīng)的函數(shù)解析式為y=-x2+2x+3;
∵y=-x2+2x+3=-(x-1)2+4,
∴拋物線的頂點(diǎn)坐標(biāo)為D(1,4),
∴△ABD中AB邊的高為4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面積=×4×4=8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入六月以來,西瓜出現(xiàn)熱賣.佳佳水果超市用760元購進(jìn)甲、乙兩個(gè)品種的西瓜,銷售完共獲利360元,其進(jìn)價(jià)和售價(jià)如表:
甲品種 | 乙品種 | |
進(jìn)價(jià)(元/千克) | 1.6 | 1.4 |
售價(jià)(元/千克) | 2.4 | 2 |
(1)求佳佳水果超市購進(jìn)甲、乙兩個(gè)品種的西瓜各多少千克?
(2)由于銷售較好,該超市決定,按進(jìn)價(jià)再購進(jìn)甲,乙兩個(gè)品種西瓜,購進(jìn)乙品種西瓜的重量不變,購進(jìn)甲品種西瓜的重量是原來的2倍,甲品種西瓜按原價(jià)銷售,乙品種西瓜讓利銷售.若兩個(gè)品種的西瓜售完獲利不少于560元,問乙品種西瓜最低售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”的故事同學(xué)們都非常熟悉,圖中的線段和折線表示“龜兔賽跑”時(shí)路程與時(shí)間的關(guān)系.請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線表示賽跑過程中__________的路程與時(shí)間的關(guān)系,線段表示賽跑過程中__________的路程與時(shí)間的關(guān)系;
(2)兔子在起初每分鐘跑多少千米?烏龜每分鐘爬多少米?
(3)兔子醒來后,以48千米/時(shí)的速度跑向終點(diǎn),結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子在途中一共睡了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,點(diǎn) E,F,G 分別在 BC,AC,AB 上,AE 與 BF 交于點(diǎn) O,且點(diǎn) O 在 CG 上,根據(jù)尺規(guī)作圖的痕跡,判斷下列說法不正確的是( )
A.AE,BF 是△ABC 的角平分線B.點(diǎn) O 到△ABC 三邊的距離相等
C.CG 也是△ABC 的一條角平分線D.AO=BO=CO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),已知點(diǎn) A(1,2),點(diǎn) P 是 y 軸正半軸上的一點(diǎn),且△AOP 為等腰三角形,則點(diǎn) P 的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交與A(1,0),B(- 3,0)兩點(diǎn)
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:若∠AOD=∠BOC=60°,A、O、C三點(diǎn)在同一條線上,△AOB與△COD是能夠重合的圖形.求:
(1)旋轉(zhuǎn)中心;
(2)旋轉(zhuǎn)角度數(shù);
(3)圖中經(jīng)過旋轉(zhuǎn)后能重合的三角形共有幾對?若A、O、C三點(diǎn)不共線,結(jié)論還成立嗎?為什么?
(4)求當(dāng)△BOC為等腰直角三角形時(shí)的旋轉(zhuǎn)角度;
(5)若∠A=15°,則求當(dāng)A、C、B在同一條線上時(shí)的旋轉(zhuǎn)角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山,就是金山銀山”.某旅游景區(qū)為了保護(hù)環(huán)境,需購買兩種型號的垃圾處理設(shè)備共10臺,已知每臺型設(shè)備日處理能力為12噸;每臺型設(shè)備日處理能力為15噸,購回的設(shè)備日處理能力不低于140噸.
(1)請你為該景區(qū)設(shè)計(jì)購買兩種設(shè)備的方案;
(2)已知每臺型設(shè)備價(jià)格為3萬元,每臺型設(shè)備價(jià)格為4.4萬元.廠家為了促銷產(chǎn)品,規(guī)定貨款不低于40萬元時(shí),則按9折優(yōu)惠;問:采用(1)設(shè)計(jì)的哪種方案,使購買費(fèi)用最少,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園平行于墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大,最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com