如圖,PA、PB分別切⊙O于點A、B,OP=2,PA=
3
,M是
AB
上一點,則∠AMB=( 。
A.100°B.120°C.135°D.150°

如圖,在優(yōu)弧AB上找到一點C,連接AC、BC,
∵PA、PB分別切⊙O于點A、B,
∴∠PAO=∠PBO=90°,
∵OP=2,PA=
3
,
∴sin∠AOP=
PA
PO
=
3
2
,
∴∠POA=∠POB=60°,
∴∠ACB=60°,
∴∠AMB=120°.
故選B.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,⊙A與y軸交于C、D兩點,圓心A的坐標為(1,0),⊙A的半徑為
5
過C作⊙A的切線交x軸于點B.
(1)求切線BC的解析式;
(2)若點P是第一象限內(nèi)⊙A上的一點,過點P作⊙A的切線與直線BC相交于點G,且∠CGP=120°,求點G的坐標;
(3)向左移動⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動過程中是否存在點A,使△AEF是直角三角形?若存在,求出點A的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB切⊙O于點B,OA=2
3
,AB=3,弦BCOA,則劣弧BC的弧長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,⊙O中,AB、AC是弦,CD是直徑,PC是⊙O的切線,切點為C,割線PD交⊙O于點E,DE=
4
3
,PE=
14
3
,BD=2,∠ACD=15°.求AB的長(不取近似值)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,AB=4,過點B作⊙O的切線,C是切線上一點,且BC=2,P是線段OA中點,連接PC交⊙O于點D,過點P作PC的垂線,交切線BC于點E,交⊙O于點F,連接DF交AB于點G,則PE的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC是等腰三角形,∠C=90°,AC=BC=
2
,在BC上取一點O,以O(shè)為圓心,OC為半徑作半圓與AB相切于點E,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,兩同心圓O,大圓的弦AB切小圓于點C,且AB=4,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知等邊△ABC,以BC為直徑作半⊙O交AB于D,DE⊥AC于點E.
(1)求證:DE是半⊙O的切線;
(2)若DE=
3
,求△ABC與半⊙O重合部分的面積.

查看答案和解析>>

同步練習冊答案