【題目】某市射擊隊打算從君君、標標兩名運動員中選拔一人參加省射擊比賽,射擊隊對兩人的射擊技能進行了測評.在相同的條件下,兩人各打靶5次,成績統(tǒng)計如下:

1)填寫下表:

平均數(shù)(環(huán))

中位數(shù)(環(huán))

方差(環(huán)2

君君

   

8

0.4

標標

8

   

   

2)根據(jù)以上信息,若選派一名隊員參賽,你認為應選哪名隊員,并說明理由.

3)如果標標再射擊1次,命中8環(huán),那么他射擊成績的方差會   .(填“變大”“變小”或“不變”)

【答案】189,2.8;(2)選君君;理由見解析;(3)變。

【解析】

1)根據(jù)平均數(shù)、中位數(shù)以及方差的定義即可得出答案;

2)比較平均數(shù)和方差,在平均數(shù)相等的情況下,選擇方差小的,即可得出答案;

3)根據(jù)方差的定義計算即可得出答案.

解:(1)君君的平均數(shù)=(8+7+8+8+9)÷5=8

標標的中位數(shù)為:9

標標的方差=

填寫下表:

平均數(shù)(環(huán))

中位數(shù)(環(huán))

方差(環(huán)2

君君

8

8

0.4

標標

8

9

2.8

故答案為:8,92.8;

2)選君君,理由:∵兩人的平均值相等,君君的方差較小,成績更穩(wěn)定,

∴選君君;

3)因為再射一次,標標的方差=,

所以如果標標再射擊1次,命中8環(huán),那么標標的射擊成績的方差變。

故答案為:變小.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1的頂點在y軸上,y2y1平移得到,它們與x軸的交點為A、BC,2BC=3AB=4OD=6,若過原點的直線被拋物線y1、y2所截得的線段長相等,則這條直線的解析式為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全受到全社會的廣泛關注,某市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)在這次活動中抽查了多少名中學生?

2)若該中學共有學生1600人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”程度的人數(shù).

3)若從對校園安全知識達到“了解程度的2個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的圖象與x軸交于A(﹣3,0)、B1,0)兩點,與y軸交于點C,且OCOA

1)求拋物線解析式;

2)過直線AC上方的拋物線上一點My軸的平行線,與直線AC交于點N.已知M點的橫坐標為m,試用含m的式子表示MN的長及△ACM的面積S,并求當MN的長最大時S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

已知:如圖,平行四邊形的對角線相交于點,點在邊的延長線上,且,聯(lián)結

1)求證:

2)如果,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象的對稱軸是直線,則下列理論:①, ,③,④,⑤當時, 的增大而減小,其中正確的是( ).

A. ①②③ B. ②③④ C. ③④⑤ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在教學樓A處分別觀測對面實驗樓CD底部的俯角為45°,頂部的仰角為37°,已知教學樓和實驗樓在同一平面上,觀測點距地面的垂直高度AB15m,求實驗樓的垂直高度即CD長(精確到1m).

參考值:sin37°=0.60,cos37°=0.80tan37°=0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O斜邊AB上的一點,以OA為半徑的BC切于點D,與AC交于點E,連接AD.

1)求證:AD平分

2)若,求陰影部分的面積.(結果保留

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù) y=ax2bxc(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:

(1)寫出方程ax2bxc0(a≠0)的實數(shù)解;

(2)若方程ax2bxck有兩個不相等的實數(shù)根,寫出 k的取值范圍;

(3)0x3 時,寫出函數(shù)值y的取值范圍.

查看答案和解析>>

同步練習冊答案