(2012•天津)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設BP=t.

(Ⅰ)如圖①,當∠BOP=30°時,求點P的坐標;
(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結果即可).
分析:(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;
(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應邊成比例,即可求得答案;
(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′A的長,然后利用相似三角形的對應邊成比例與m=
1
6
t2-
11
6
t+6
,即可求得t的值.
解答:解:(Ⅰ)根據(jù)題意,∠OBP=90°,OB=6,
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2,
即(2t)2=62+t2,
解得:t1=2
3
,t2=-2
3
(舍去).
∴點P的坐標為(2
3
,6).

(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP,
∴∠OPB′=∠OPB,∠QPC′=∠QPC,
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,
∴∠OPB+∠QPC=90°,
∵∠BOP+∠OPB=90°,
∴∠BOP=∠CPQ.
又∵∠OBP=∠C=90°,
∴△OBP∽△PCQ,
OB
PC
=
BP
CQ
,
由題意設BP=t,AQ=m,BC=11,AC=6,則PC=11-t,CQ=6-m.
6
11-t
=
t
6-m

∴m=
1
6
t2-
11
6
t+6
(0<t<11).

(Ⅲ)過點P作PE⊥OA于E,
∴∠PEA=∠QAC′=90°,
∴∠PC′E+∠EPC′=90°,
∵∠PC′E+∠QC′A=90°,
∴∠EPC′=∠QC′A,
∴△PC′E∽△C′QA,
PE
AC′
=
PC′
C′Q
,
∵PC′=PC=11-t,PE=OB=6,AQ=m,C′Q=CQ=6-m,
∴AC′=
C′Q2-AQ2
=
36-12m
,
6
36-12m
=
11-t
6-m

36
12(3-m)
=(
11-t
6-m
)2
,
∴3(6-m)2=(3-m)(11-t)2,
∵m=
1
6
t2-
11
6
t+6
,
∴3(-
1
6
t2+
11
6
t)2=(3-
1
6
t2+
11
6
t-6)(11-t)2,
1
12
t2(11-t)2=(-
1
6
t2+
11
6
t-3)(11-t)2,
1
12
t2=-
1
6
t2+
11
6
t-3,
∴3t2-22t+36=0,
解得:t1=
11-
13
3
,t2=
11+
13
3
,
點P的坐標為(
11-
13
3
,6)或(
11+
13
3
,6).

法二:∵∠BPO=∠OPC′=∠POC′,
∴OC′=PC′=PC=11-t,
過點P作PE⊥OA于點E,
則PE=BO=6,OE=BP=t,
∴EC′=11-2t,
在Rt△PEC′中,PE2+EC′2=PC′2
即(11-t)2=62+(11-2t)2,
解得:t1=
11-
13
3
,t2=
11+
13
3

點P的坐標為(
11-
13
3
,6)或(
11+
13
3
,6).
點評:此題考查了折疊的性質(zhì)、矩形的性質(zhì)以及相似三角形的判定與性質(zhì)等知識.此題難度較大,注意掌握折疊前后圖形的對應關系,注意數(shù)形結合思想與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•天津)已知拋物線y=ax2+bx+c(0<2a<b)的頂點為P(x0,y0),點A(1,yA)、B(0,yB)、C(-1,yC)在該拋物線上.
(Ⅰ)當a=1,b=4,c=10時,
①求頂點P的坐標;
②求
yA
yB-yC
的值;
(Ⅱ)當y0≥0恒成立時,求
yA
yB-yC
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)“三等分任意角”是數(shù)學史上一個著名問題.已知一個角∠MAN,設∠α=
13
∠MAN.
(Ⅰ)當∠MAN=69°時,∠α的大小為
23
23
(度);
(Ⅱ)如圖,將∠MAN放置在每個小正方形的邊長為1cm的網(wǎng)格中,角的一邊AM與水平方向的網(wǎng)格線平行,另一邊AN經(jīng)過格點B,且AB=2.5cm.現(xiàn)要求只能使用帶刻度的直尺,請你在圖中作出∠α,并簡要說明做法(不要求證明)
如圖,讓直尺有刻度一邊過點A,設該邊與過點B的豎直方向的網(wǎng)格線交于點C,與過點B水平方向的網(wǎng)格線交于點D,保持直尺有刻度的一邊過點A,調(diào)整點C、D的位置,使CD=5cm,畫射線AD,此時∠MAD即為所求的∠α.
如圖,讓直尺有刻度一邊過點A,設該邊與過點B的豎直方向的網(wǎng)格線交于點C,與過點B水平方向的網(wǎng)格線交于點D,保持直尺有刻度的一邊過點A,調(diào)整點C、D的位置,使CD=5cm,畫射線AD,此時∠MAD即為所求的∠α.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)已知反比例函數(shù)y=
k-1x
(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)已知⊙O中,AC為直徑,MA、MB分別切⊙O于點A、B.

(Ⅰ)如圖①,若∠BAC=25°,求∠AMB的大。
(Ⅱ)如圖②,過點B作BD⊥AC于E,交⊙O于點D,若BD=MA,求∠AMB的大。

查看答案和解析>>

同步練習冊答案