【題目】如圖,若AD∥BC,∠A=∠D.
(1)猜想∠C與∠ABC的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若CD∥BE,∠D=50°,求∠EBC的度數(shù).

【答案】
(1)解:∵AD∥BC,

∴∠D+∠C=180°,∠A+∠ABC=180°,

∵∠A=∠D,

∴∠C=∠ABC;


(2)解:∵CD∥BE,

∴∠D=∠AEB.

∵AD∥BC,

∴∠AEB=∠EBC,

∴∠D=∠EBC=50°.


【解析】(1)先根據(jù)平行線的性質(zhì)得出∠D+∠C=180°,∠A+∠ABC=180°,再根據(jù)∠A=∠D即可得出結(jié)論;(2)根據(jù)CD∥BE可得出∠D=∠AEB,再由AD∥BC即可得出結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用平行線的性質(zhì),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列語(yǔ)句:

①對(duì)頂角不相等;②今天天氣很熱。虎弁唤窍嗟;④畫(huà)∠AOB的平分線OC;⑤這個(gè)角等于30°嗎?在這些語(yǔ)句是,屬于命題的是_______(填寫(xiě)序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于 AB的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長(zhǎng)為10,AB=7,則△ABC的周長(zhǎng)為(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△AOB的三個(gè)頂點(diǎn)A,O,B都在格點(diǎn)上.

(1)畫(huà)出△AOB關(guān)于點(diǎn)O成中心對(duì)稱的三角形;
(2)畫(huà)出△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后得到的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90度.

(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過(guò)計(jì)算說(shuō)明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長(zhǎng)線、DC的延長(zhǎng)線于點(diǎn)G,H,交BD于點(diǎn)0.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什幺特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班同學(xué)為了解2011年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請(qǐng)解答以下問(wèn)題:
(1)把下面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

月均用水量x(t)

頻數(shù)(戶)

頻率

0<x≤5

6

0.12

5<x≤10

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

25<x≤30

2

0.04



(2)求該小區(qū)用水量不超過(guò)15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過(guò)20t的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m、n是一元二次方程x2+3x70的兩個(gè)根,則m2+4m+n=( 。

A.3B.4C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(5,0),C(3,3),D(1,4).

(1)描出A、B、C、D四點(diǎn)的位置,并順次連接A、B、C、D;
(2)四邊形ABCD的面積是;(直接寫(xiě)出結(jié)果)
(3)把四邊形ABCD向左平移6個(gè)單位,再向下平移1個(gè)單位得到四邊形A′B′C′D′在圖中畫(huà)出四邊形A′B′C′D′,并寫(xiě)出A′B′C′D′的坐標(biāo).[(1)(3)問(wèn)的圖畫(huà)在同一坐標(biāo)系中].

查看答案和解析>>

同步練習(xí)冊(cè)答案