【題目】如圖,在△ABC中,AB=AC,點(diǎn)O為∠BAC的平分線上一點(diǎn),連接OB、OC.
(1)求證:OB=OC;
(2)若OA=OC,∠BAC=46°,求∠OCB的度數(shù).
【答案】(1)見解析.(2)44°
【解析】
(1)由OA平分∠BAC可知∠BAO=∠CAO,由SAS即可證明△BAO≌△CAO,從而得出結(jié)論.
(2)由(1)可知∠OAC=∠OAB=23°,由OA=OC可知∠OAC=∠OCA=23°,由三角形外角性質(zhì)可知∠COB=2∠OAC+2∠OAB=2∠BAC即可解答.
證明:(1)∵OA平分∠BAC,
∴∠BAO=∠CAO=∠BAC.
在△BAO和△CAO中,
∴△BAO≌△CAO(SAS)
∴OB=OC.
(2)由(1)得∴∠BAO=∠CAO=∠BAC,OB=OC,
∵OA=OC,
∴OA=OB=OC,
∴∠OAC=∠OCA=∠BAO=∠OBA=23°,
∵∠COB=∠OAC+∠OCA+∠BAO+∠OBA=2∠BAC=92°.
∴∠OCB=(180°﹣92°)÷2=44°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 拋物線與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)證明推斷:如圖①,在△ABC中,D,E分別是邊BC,AB的中點(diǎn),AD,CE相交于點(diǎn)G,求證:.
(2)類比探究:如圖②,在正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,E為邊BC的中點(diǎn),AE、BD交于點(diǎn)F,若AB=6,求OF的長(zhǎng);
(3)拓展運(yùn)用:若正方形ABCD變?yōu)?/span>□ABCD,如圖③,連結(jié)DE交AC于點(diǎn)G,若四邊形OFEG的面積為,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,1)關(guān)于直線y =kx的對(duì)稱點(diǎn)恰好落在x軸的正半軸上,則k的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c經(jīng)過點(diǎn)A(0,2)和點(diǎn)B(-1,0).
(1)求此拋物線的解析式;
(2)將此拋物線平移,使其頂點(diǎn)坐標(biāo)為(2,1),平移后的拋物線與x軸的兩個(gè)交點(diǎn)分別為點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左邊),求點(diǎn)C,D的坐標(biāo);
(3)將此拋物線平移,設(shè)其頂點(diǎn)的縱坐標(biāo)為m,平移后的拋物線與x軸兩個(gè)交點(diǎn)之間的距離為n,若1<m<3,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BC上一點(diǎn),連接DE,點(diǎn)F在邊CD上,且AF⊥CD交DE于點(diǎn)G,連接CG.已知∠DEC=45°,GC⊥BC.
(1)若∠DCG=30°,CD=4,求AC的長(zhǎng).
(2)求證:AD=CG+DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本,已知:兩種筆記本的進(jìn)價(jià)之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學(xué)買4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進(jìn)價(jià)分別是多少元?
(2)該文具店購(gòu)入這兩種筆記本共60本,花費(fèi)不超過296元,則購(gòu)買甲種筆記本多少本時(shí)文具店獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AB的中點(diǎn),AC<BC.
(1)試用無刻度的直尺和圓規(guī),在BC上作一點(diǎn)E,使得直線ED平分ABC的周長(zhǎng);(不要求寫作法,但要保留作圖痕跡).
(2)在(1)的條件下,若DE分Rt△ABC面積為1﹕2兩部分,請(qǐng)?zhí)骄?/span>AC與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了提高學(xué)生的綜合素質(zhì),成立了以下社團(tuán):.機(jī)器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個(gè)社團(tuán).為了解學(xué)生參加社團(tuán)的情況,從加社團(tuán)的學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,其中圖中所占扇形的圓心角為.
根據(jù)以上信息,解答下列問題:
這次被調(diào)查的學(xué)生共有 人;
請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
若該校共有學(xué)生加入了社團(tuán),請(qǐng)你估計(jì)這名學(xué)生中有多少人參加了羽毛球社團(tuán);
在機(jī)器人社團(tuán)活動(dòng)中,由于甲、乙、丙、丁四人平時(shí)的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機(jī)器人大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com