【題目】如圖,正方形中,點(diǎn)是上任意一點(diǎn),以為邊作正方形.
①連接,求證:;
②連接,猜想的度數(shù),并證明你的結(jié)論;
③設(shè)點(diǎn)在線段上運(yùn)動(dòng),,正方形的面積為,正方形的面積為,試求與的函數(shù)關(guān)系式,并寫出的取值范圍.
【答案】(1)證明見解析;(2)的度數(shù)為,證明見解析;(3).
【解析】
(1)根據(jù)三角形全等的判定定理,可以證得△AOB≌△ADF,進(jìn)而得出結(jié)論.
(2)過(guò)E作CD的垂線,得出所構(gòu)成的三角形為等邊三角形,繼而得出所求角的度數(shù)為45°.
(3)由正方形AOCD的面積,可以而出邊長(zhǎng),又有OB的長(zhǎng),根據(jù)勾股定理,得出正方形ABEF的邊長(zhǎng),繼而求出面積,在邊OC上運(yùn)動(dòng),則可得出x的取值范圍.
證明:∵正方形,
∴,,
∵正方形,
∴,,
∴,
∴,
∴.
猜想的度數(shù)為
證明:如圖,過(guò)點(diǎn)作,垂足為,
∵,
∴,
在和中
,
∴,
∴,,
∴,
∴,
∵,
∴三角形為等腰直角三角形,
∴,
∴.
解:∵,
∴,
∵正方形的面積為,
∴,
∴,
∴,
∵點(diǎn)在線段上運(yùn)動(dòng),
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市“青山綠水”行動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個(gè)工程隊(duì)來(lái)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.
(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;
(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬(wàn)元,乙隊(duì)每天綠化費(fèi)用為0.5萬(wàn)元,社區(qū)要使這次綠化的總費(fèi)用不超過(guò)40萬(wàn)元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境和提高果樹產(chǎn)量,某果農(nóng)計(jì)劃從甲、乙兩個(gè)倉(cāng)庫(kù)用汽車向A、B兩個(gè)果園運(yùn)送有機(jī)化肥,甲、乙兩個(gè)倉(cāng)庫(kù)分別可運(yùn)出80噸和100噸有機(jī)化肥,A、B兩個(gè)果園分別需要110噸和70噸有機(jī)化肥.甲倉(cāng)庫(kù)到A、B兩個(gè)果園的路程分別為15千米和25千米,乙倉(cāng)庫(kù)到A、B兩個(gè)果園的路程都是20千米.設(shè)甲倉(cāng)庫(kù)運(yùn)往A果園x噸有機(jī)化肥,解答下列問(wèn)題:
(1)甲倉(cāng)庫(kù)運(yùn)往B果園 噸有機(jī)化肥,乙倉(cāng)庫(kù)運(yùn)往B果園 噸有機(jī)化肥;
(2)若汽車每噸每千米的運(yùn)費(fèi)為2元,設(shè)總運(yùn)費(fèi)為y元,求y關(guān)于x的函數(shù)表達(dá)式,并求當(dāng)甲倉(cāng)庫(kù)運(yùn)往A果園多少噸有機(jī)化肥時(shí),總運(yùn)費(fèi)最省?此時(shí)的總運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,以AC為邊向外作△ACD,F為BC上一點(diǎn),連結(jié)AF.
(1)如圖1,若∠ACD=90°,∠CAD=30°,CD=1,AB=BF=2,求FC的長(zhǎng)度.
(2)如圖2,若AB=AC,延長(zhǎng)DC交AF延長(zhǎng)線于H點(diǎn),且∠AHD=90°,∠BCH=∠CAD,連結(jié)BD交AF于M點(diǎn),求證:CD=2MH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖①,在四邊形中,,,于點(diǎn).若,求四邊形的面積.
應(yīng)用:如圖②,在四邊形中,,,于點(diǎn).若,,,則四邊形的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.
(1)求證:∠FBD=∠CAD;
(2)求證:BE⊥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們將如圖所示的兩種排列形式的點(diǎn)的個(gè)數(shù)分別稱作“三角形數(shù)”(如1,3,6,10……) 和“正方形數(shù)”(如1,4,9,16……),在小于200的數(shù)中,設(shè)最大的“三角形數(shù)”為t,最大的“正方形數(shù)”為m,則t+m的值為( 。
A.33B.301C.386D.571
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,CE∥BD,DE∥AC,若AC=4,則四邊形OCED的周長(zhǎng)為( 。
A. 4 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A=40°,若點(diǎn)O是△ABC的外心,則∠BOC=_____°;若點(diǎn)I是△ABC的內(nèi)心,則∠BIC=_____°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com