【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛(ài)哪一類(lèi)節(jié)目 (被調(diào)查的學(xué)生只選一類(lèi)并且沒(méi)有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問(wèn)題:

(1)求本次調(diào)查的學(xué)生人數(shù);

(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛(ài)電視劇節(jié)目的人數(shù).

【答案】(1)300人(2)43.2°(3)460人

【解析】

試題分析:(1)根據(jù)喜愛(ài)電視劇的人數(shù)是69人,占總?cè)藬?shù)的23%,即可求得總?cè)藬?shù);

(2)根據(jù)總?cè)藬?shù)和喜歡娛樂(lè)節(jié)目的百分?jǐn)?shù)可求的其人數(shù),補(bǔ)全即可;利用360°乘以對(duì)應(yīng)的百分比即可求得圓心角的度數(shù);

(3)利用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求解.

試題解析: (1)69÷23%=300(人)

∴本次共調(diào)查300人;

(2)∵喜歡娛樂(lè)節(jié)目的人數(shù)占總?cè)藬?shù)的20%,

∴20%×300=60(人),補(bǔ)全如圖;

∵360°×12%=43.2°,

∴新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù)為43.2°;

(3)2000×23%=460(人),

∴估計(jì)該校有460人喜愛(ài)電視劇節(jié)目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于AB兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C0,﹣3

1)求拋物線的解析式;

2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.

3)直線l經(jīng)過(guò)AC兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過(guò)點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、mx軸圍成的三角形和直線lmy軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點(diǎn)C和點(diǎn)D,且△BOD的面積=4.

(1)求直線AO的解析式;

(2)求反比例函數(shù)解析式;

(3)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;

(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)寫(xiě)出一個(gè)原命題是真命題,逆命題是假命題的命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用平面去截正方體,在所得的截面中,不可能出現(xiàn)的是( 。

A. 四邊形 B. 五邊形 C. 六邊形 D. 七邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①已知△ACB和△DCE為等腰直角三角形,按如圖的位置擺放,直角頂點(diǎn)

C重合.

(1)求證:AD=BE;

(2)將△DCE繞點(diǎn)C旋轉(zhuǎn)得到圖②,點(diǎn)A、DE在同一直線上時(shí),若CD=,BE=3,

AB 的長(zhǎng);

(3)將△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到圖③,若∠CBD=45°,AC=6,BD=3,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接對(duì)角線相等的四邊形的各邊中點(diǎn),所得圖形一定是( )

A. 平行四邊形B. 矩形C. 菱形D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形的外接圓的圓心為( 。

A. 三條高的交點(diǎn) B. 三條邊的垂直平分線的交點(diǎn)

C. 三條角平分線的交點(diǎn) D. 三條中線的交點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案