如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于點(diǎn)D、E兩點(diǎn).
(1)求點(diǎn)B、C、D的坐標(biāo);
(2)如果一個(gè)二次函數(shù)圖象經(jīng)過(guò)B、C、D三點(diǎn),求這個(gè)二次函數(shù)解析式.

【答案】分析:(1)由A的坐標(biāo)得到OA的長(zhǎng),再由圓的半徑為5得到AD的長(zhǎng),由AD-OA求出OD的長(zhǎng),確定出D的坐標(biāo),連接AC,在直角三角形AOC中,由OA及AC的長(zhǎng),利用勾股定理求出OC的長(zhǎng),確定出C的坐標(biāo),再由AO垂直于BC,利用垂徑定理得到O為BC的中點(diǎn),可得出OB=OC,由OC的長(zhǎng)得出OB的長(zhǎng),即可確定出B的坐標(biāo);
(2)設(shè)所求二次函數(shù)的解析式為y=ax2+bx+c(a≠0),將B、C、D的坐標(biāo)代入,得到關(guān)于a,b及c的方程組,求出方程組的解得到a,b及c的值,即可確定出二次函數(shù)的解析式.
解答:解:(1)∵點(diǎn)A的坐標(biāo)為(0,-3),線(xiàn)段AD=5,
∴OD=AD-OA=5-3=2,即點(diǎn)D的坐標(biāo)(0,2),
連接AC,在Rt△AOC中,∠AOC=90°,OA=3,AC=5,
∴根據(jù)勾股定理得:OC==4,
∴點(diǎn)C的坐標(biāo)為(4,0),
∵AO⊥BC,
∴OB=OC=4,
∴點(diǎn)B坐標(biāo)為(-4,0);

(2)設(shè)所求二次函數(shù)的解析式為y=ax2+bx+c(a≠0),
由于該二次函數(shù)的圖象經(jīng)過(guò)B(-4,0)、C(4,0)、D(0,2)三點(diǎn),
則將三點(diǎn)坐標(biāo)代入二次函數(shù)解析式得:,
解得:
∴所求的二次函數(shù)的解析式為y=-x2+2.
點(diǎn)評(píng):此題考查了垂徑定理,坐標(biāo)與圖形性質(zhì),勾股定理,以及待定系數(shù)法確定函數(shù)解析式,熟練掌握垂徑定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案