【題目】在平面直角坐標系中,拋物線y=﹣x2+x+2與x軸交于A,B兩點,交y軸于點C,點C關(guān)于拋物線對稱軸對稱的點為D.
(1)求點D的坐標及直線AD的解析式;
(2)如圖1,連接CD、AD、BD,點M為線段CD上一動點,過M作MN∥BD交線段AD于N點,點P是y軸上的動點,當△CMN的面積最大時,求△MPN的周長取得最小值時點P的坐標;
(3)如圖2,線段AE在第一象限內(nèi)交BD于點E,其中tan∠EAB=,將拋物線向右水平移動,點A平移后的對應(yīng)點為點G;將△ABD繞點B逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀為△A1BD1,若射線BD1與線段AE的交點為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個三角形,是否存在點G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請直接寫出點G的坐標;若不存在,請說明理由.
【答案】(1)D(,2);直線AD解析式y=x+;(2)P(0,);(3)G(,0),(,0),(,0).
【解析】
(1)根據(jù)題意可得A,B,C坐標,根據(jù)對稱可求D點坐標,用待定系數(shù)法可求AD解析式;(2)作DH⊥AB,MT⊥AB,交AD于T,作NK⊥MT,設(shè)M(m,2),則T(m,m+),根據(jù)相似三角形可得MK=MT,用m表示△CMN的面積,根據(jù)二次函數(shù)的最值問題,可求M點坐標,作M關(guān)于y軸對稱點M1(- ,2),連接M1N交y軸于點P,利用待定系數(shù)法確定函數(shù)關(guān)系式以及直線與坐標軸的交點的求法求得點P的坐標;(3)如圖3,4,5,分類討論,通過數(shù)量關(guān)系列出方程,可求G點坐標.
(1)令x=0,則y=2,
∴C(0,2),
∵對稱軸為x=,且C,D關(guān)于對稱軸對稱,
∴D(,2).
令y=0,則0=﹣x2+x+2,
∴x1=﹣,x2=2,
∴A(﹣,0),B(2,0),
設(shè)直線AD解析式y=kx+b,
,
解得:k=1,b=,
∴直線AD解析式y=x+;
(2)如圖1:作DH⊥AB,MT⊥AB,交AD于T,作NK⊥MT
設(shè)M(m,2),則T(m,m+)
∵A(﹣,0),D(,2),
∴AH=DH
∴∠DAH=∠ADH=45°=∠CDA
∵MT∥DH,KN∥CD
∴∠KNT=∠KTN=45°=∠CDA
∴KT=KN,MT=MD
∵MN∥BD,
∴∠MND=∠ADB且∠CDA=∠DAB
∴△ADB∽△MND,
∴,
∴ND=MD.
∵DT=MD,
∴NT=MD.
∵KN∥CD,
∴,
∴KT=MT
∴KM=MT=(﹣m)
∴S△CMN=CM×KM=m×(﹣m)=﹣m2+m
∴當m=時,S△CMN最大值.
∴M(,2).
如圖2 作M關(guān)于y軸對稱點M1(﹣,2),
由B(2,0),D(,2)得到直線BD的解析式為:y=﹣2x+4.
∵MN∥BD,
∴設(shè)直線MN的解析式為:y=﹣x+t.
把M(,2)代入求得:y=﹣x+.
聯(lián)立方程組,
解之得,即N(),
由M1(﹣,2),N()得到直線M1N的解析式為:y=﹣x+.
令x=0,則y=,即:P(0,).
(3)如圖3:
①當AG=FG,∠GFB=90°時,∵tan∠EAB=,
∴設(shè)FH=a,則AH=2a,設(shè)AG=FG=x,則GH=2a﹣x
∵FH2+GH2=FG2
∴a2+(2a﹣x)2=x2
∴x=a,
∴GH=a,
∵FH⊥AB,GF⊥FB
∴∠FBG=∠GFH
∴tan∠GFH=tan∠FBG
∴,
∴BH=a
∵AH+BH=AB=3,
∴2a+a=3,
∴a=,
∵OG=AG﹣AO
∴OG=×﹣=,
∴G(,0)
②如圖4
當FG=BG,∠AGF=90°時,設(shè)GF=a,則AG=2a,BG=a,
∴AB=AG+BG=3a=3,
∴a=,
∴G(,0);
③如圖5:
當FG=BG,∠AFG=90°時,設(shè)GF=a,則BG=a,AG=a.
∴AB=AG+BG=a+a=3,
∴a=,
∵OG=AG﹣AO=a﹣=,
∴G(,0),
綜上所述G(,0),(,0),(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,CD是∠ACB的平分線, DE垂直平分BC,若DE=2,則AB=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),下列說法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若( ,y1)、(,y2)是拋物線上的兩點,則y1<y2;⑤>m(am+b)(其中m≠).其中說法正確的是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科研小組獲取了聲音在空氣中傳播的速度v與空氣溫度t關(guān)系的一些數(shù)據(jù)如下表:
溫度t(°C) | -20 | -10 | 0 | 10 | 20 | 30 |
聲速v(m/s) | 318 | 324 | 330 | 336 | 342 | 348 |
(1)根據(jù)表中提供的信息,可推測速度v是溫度t的一次函數(shù),請你寫出其函數(shù)表達式;
(2)當空氣溫度為25°C,聲音10秒可以傳播多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=2x+3與拋物線y=ax2交于A、B兩點,已知點A的橫坐標為3.
(1)求A、B兩點的坐標及拋物線的解析式;
(2)O為坐標原點,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為2的正六邊形ABCDEF在平面直角坐標系中的位置如圖所示,點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2018次翻轉(zhuǎn)之后,點B的坐標是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,當PC+PD的值最小時,點P的坐標為( 。
A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com