【題目】如圖,在中,,,,為斜邊上的兩個(gè)點(diǎn),且,,則的外接圓的半徑是________

【答案】

【解析】

設(shè)∠DCE=x,∠ACD=y,根據(jù)等腰三角形的性質(zhì)求出∠ACE、∠BDC,根據(jù)三角形內(nèi)角和定理求出∠DCE=45°,根據(jù)三角形的外接圓和外心的概念求出答案.

設(shè)∠DCE=x,ACD=y,則∠ACE=x+y,BCE=90°ACE=90°xy,

AE=AC,

∴∠ACE=AEC=x+y,

BD=BC,

∴∠BDC=BCD=BCE+DCE=90°xy+x=90°y,

DCE,∵∠DCE+CDE+DEC=180°,

x+(90°y)+(x+y)=180°,

解得x=45°,

∴∠DCE=45°,

AC=6,BC=8,

AB= =10,

AE=AC=6,BD=BC=8,

DE=4,又∠DCE=45°,

如圖,作直徑CH,連接HE,

∴∠CEH=90°,又∠CHE=DCE=45°,CE=4,

CH=4,

DCE的外接圓的直徑4

DCE的外接圓的半徑為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的拋物線三角形.在拋物線y=ax2+bx+c中,系數(shù)a、b、c為絕對值不大于1的整數(shù),則該拋物線的拋物線三角形是等腰直角三角形的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3,).

(1)將線段平移得到線段,其中點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn).

①點(diǎn)平移到點(diǎn)的過程可以是:先向 平移 個(gè)單位長度,再向 平移 個(gè)單位長度;

②點(diǎn)的坐標(biāo)為 .

(2)(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫出圖形并求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)產(chǎn)品生產(chǎn)基地收獲紅薯192噸,準(zhǔn)備運(yùn)給甲、乙兩地的承包商進(jìn)行包銷.該基地用大、小兩種貨車共18輛恰好能一次性運(yùn)完這批紅薯,已知這兩種貨車的載重量分別為14/噸和8/輛,運(yùn)往甲、乙兩地的運(yùn)費(fèi)如下表:

車型

運(yùn)費(fèi)

運(yùn)往甲地/(元/輛)

運(yùn)往乙地/(元/輛)

大貨車

720

800

小貨車

500

650

(1)求這兩種貨車各用多少輛;

(2)如果安排10輛貨車前往甲地,其余貨車前往乙地,其中前往甲地的大貨車為a輛,總運(yùn)費(fèi)為w元,求w關(guān)于a的函數(shù)關(guān)系式;

(2)在(2)的條件下,若甲地的承包商包銷的紅薯不少于96噸,請你設(shè)計(jì)出使總運(yùn)費(fèi)最低的貨車調(diào)配方案,并求出最低總運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:

;②方程的兩個(gè)根是,;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)時(shí),增大而增大

其中結(jié)論正確的個(gè)數(shù)是(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若直線軸于點(diǎn)、交軸于點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到.過點(diǎn),,的拋物線

求拋物線的表達(dá)式;

若與軸平行的直線秒鐘一個(gè)單位長的速度從軸向左平移,交線段于點(diǎn)、交拋物線于點(diǎn),求線段的最大值;

如圖,點(diǎn)為拋物線的頂點(diǎn),點(diǎn)是拋物線在第二象限的上一動(dòng)點(diǎn)(不與點(diǎn)、重合),連接,以為邊作圖示一側(cè)的正方形.隨著點(diǎn)的運(yùn)動(dòng),正方形的大小、位置也隨之改變,當(dāng)頂點(diǎn)恰好落在軸上時(shí),直接寫出對應(yīng)的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的方格中,每個(gè)小正方形的邊長都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).

(1)把△ABC向下平移8個(gè)單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;

(2)畫出與△A1B1C1關(guān)于y軸對稱的△A2B2C2;

(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對應(yīng)的點(diǎn),寫出P2的坐標(biāo)為    ;

(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

同步練習(xí)冊答案