【題目】現(xiàn)從A,B兩市場(chǎng)向甲、乙兩地運(yùn)送水果,A,B兩個(gè)水果市場(chǎng)分別有水果35和15噸,其中甲地需要水果20噸,乙地需要水果30噸,從A到甲地運(yùn)費(fèi)50元/噸,到乙地30元/噸;從B到甲地運(yùn)費(fèi)60元/噸,到乙地45元/噸
(1)設(shè)A市場(chǎng)向甲地運(yùn)送水果x噸,請(qǐng)完成表:
運(yùn)往甲地(單位:噸) | 運(yùn)往乙地(單位:噸) | |
A市場(chǎng) | x |
|
B市場(chǎng) |
|
|
(2)設(shè)總運(yùn)費(fèi)為W元,請(qǐng)寫(xiě)出W與x的函數(shù)關(guān)系式,寫(xiě)明x的取值范圍;
(3)怎樣調(diào)運(yùn)水果才能使運(yùn)費(fèi)最少?運(yùn)費(fèi)最少是多少元?
【答案】(1)見(jiàn)解析;(2) W=5x+2025(5≤x≤20);(3)見(jiàn)解析.
【解析】
(1)根據(jù)A市場(chǎng)共有35噸,運(yùn)往甲地x噸,剩下的都運(yùn)往乙地得到A市場(chǎng)水果運(yùn)往乙地的數(shù)量;甲地共需要20噸寫(xiě)出從B市場(chǎng)運(yùn)送的量,B市場(chǎng)剩下的都運(yùn)送到乙地;
(2)根據(jù)題目數(shù)據(jù),利用運(yùn)送到甲、乙兩地的水果的數(shù)量乘以單價(jià),整理即可得W與x的函數(shù)關(guān)系式;
(3)根據(jù)一次函數(shù)的性質(zhì)進(jìn)行解答即可.
(1)如下表:
(2)依題意得:,
解得:5≤x≤20,
∴W=50x+30(35﹣x)+60(20﹣x)+45(x﹣5)=5x+2025(5≤x≤20);
(3)∵W隨x增大而增大,∴當(dāng)x=5時(shí),運(yùn)費(fèi)最少,最小運(yùn)費(fèi)W=5×5+2025=2050元.
此時(shí),從A市場(chǎng)運(yùn)往甲地5噸水果,運(yùn)往乙地30噸水果;B市場(chǎng)的15噸水果全部運(yùn)往甲地.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒過(guò)點(diǎn)D作于點(diǎn)F,連接DE、EF.
求證:;
四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.
當(dāng)t為何值時(shí),為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張正方形紙片剪成四個(gè)小正方形,得到4個(gè)小正方形,稱為第一次操作;然后,將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到7個(gè)小正方形,稱為第二次操作;再將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到10個(gè)小正方形,稱為第三次操作;…,根據(jù)以上操作,若要得到2017個(gè)小正方形,則需要操作的次數(shù)是( )
A. 672 B. 671 C. 670 D. 674
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】OC把∠AOB分成兩部分且有下列兩個(gè)等式成立:
①∠AOC=直角+∠BOC;②∠BOC=平角-∠AOC,問(wèn)∶
(1)OA與OB的位置關(guān)系怎樣?
(2)OC是否為∠AOB的平分線?并寫(xiě)出判斷的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx與直線y=2x+4交于A(a,8)、B兩點(diǎn),點(diǎn)P是拋物線上A、B之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P分別作x軸、y軸的平行線與直線AB交于點(diǎn)C和點(diǎn)E.
(1)求拋物線的解析式;
(2)若C為AB中點(diǎn),求PC的長(zhǎng);
(3)如圖,以PC,PE為邊構(gòu)造矩形PCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),請(qǐng)求出m,n之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)學(xué)活動(dòng)課中,小敏為了測(cè)量校園內(nèi)旗桿CD的高度,先在教學(xué)樓的底端A點(diǎn)處,觀測(cè)到旗桿頂端C的仰角∠CAD=60°,然后爬到教學(xué)樓上的B處,觀測(cè)到旗桿底端D的俯角是30°,已知教學(xué)樓AB高4米.
(1)求教學(xué)樓與旗桿的水平距離AD;(結(jié)果保留根號(hào))
(2)求旗桿CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com