【題目】如圖,等腰直角三角形OAB的三個(gè)定點(diǎn)分別為、、,過(guò)Ay軸的垂線.點(diǎn)Cx軸上以每秒的速度從原點(diǎn)出發(fā)向右運(yùn)動(dòng),點(diǎn)D上以每秒的速度同時(shí)從點(diǎn)A出發(fā)向右運(yùn)動(dòng),當(dāng)四邊形ABCD為平行四邊形時(shí)CD同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.當(dāng)CD停止運(yùn)動(dòng)時(shí),將OAB沿y軸向右翻折得到CD相交于點(diǎn)E,Px軸上另一動(dòng)點(diǎn).

(1)求直線AB的解析式,并求出t的值.

(2)當(dāng)PE+PD取得最小值時(shí),求的值.

(3)設(shè)P的運(yùn)動(dòng)速度為1,若PB點(diǎn)出發(fā)向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為,請(qǐng)用含的代數(shù)式表示PAE的面積.

【答案】1;(2; (3)①當(dāng)時(shí),SPAE=,②當(dāng)時(shí), SPAE=.

【解析】

1)設(shè)直線AB,把B(-3,0)代入,求得k,確定解析式;再設(shè)設(shè)秒后構(gòu)成平行四邊形,根據(jù)題意列出方程,求出t即可;

(2)過(guò)E作關(guān)于軸對(duì)于點(diǎn),連接EE′交x軸于點(diǎn)P,則此時(shí)PE+PD最小.由(1)得到當(dāng)t=2時(shí),有C,0),D(,3),再根據(jù)ABCD,求出直線CDAB1的解析式,確定E的坐標(biāo);然后再通過(guò)乘法公式和線段運(yùn)算,即可完成解答.

3)根據(jù)(1)可以判斷有兩種情況,然后分類(lèi)討論即可.

1)解:設(shè)直線AB,把B(-3,0)代入得:

由題意得:

設(shè)秒后構(gòu)成平行四邊形,則

解之得:,

2)如圖:過(guò)E作關(guān)于軸對(duì)于點(diǎn),

連接EE′交x軸于點(diǎn)P,則此時(shí)PE+PD最小.

由(1t=2得:

C,0),D(,3)

ABCD

∴設(shè)CD

C,0)代入得

b1=

CD為:

易得為:

解之得:E(,)

(3)①當(dāng)時(shí)

S△PAE=S△PAB1-S△PEB1=

②當(dāng)時(shí):

S△PAE=S△PAB1-S△PEB1=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC邊上一點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AFBD,連接BF

1)求證:△AEF≌△DEC

2)若ABAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),以P11)為圓心的⊙Px軸、y軸分別相切于點(diǎn)M和點(diǎn)N,點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),連接PF,過(guò)點(diǎn)PPE⊥PFy軸于點(diǎn)E,設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間是t秒(t0

1)若點(diǎn)Ey軸的負(fù)半軸上(如圖所示),求證:PE=PF;

2)在點(diǎn)F運(yùn)動(dòng)過(guò)程中,設(shè)OE=aOF=b,試用含a的代數(shù)式表示b

3)作點(diǎn)F關(guān)于點(diǎn)M的對(duì)稱(chēng)點(diǎn)F′,經(jīng)過(guò)MEF′三點(diǎn)的拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)Q,連接QE.在點(diǎn)F運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、MF為頂點(diǎn)的三角形相似?若存在,請(qǐng)直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】創(chuàng)衛(wèi)工作人人參與,環(huán)境衛(wèi)生人人受益,我區(qū)創(chuàng)衛(wèi)工作已進(jìn)入攻堅(jiān)階段某校擬整修學(xué)校食堂,現(xiàn)需購(gòu)買(mǎi)A、B兩種型號(hào)的防滑地磚共60塊,已知A型號(hào)地磚每塊80元,B型號(hào)地磚每塊40元

1若采購(gòu)地磚的費(fèi)用不超過(guò)3200元,那么,最多能購(gòu)買(mǎi)A型號(hào)地磚多少塊?

2某地磚供應(yīng)商為了支持創(chuàng)衛(wèi)工作,現(xiàn)將A、B兩種型號(hào)的地磚單價(jià)都降低a%,這樣,該;ㄙM(fèi)了2560元就購(gòu)得所需地磚,其中A型號(hào)地磚a塊,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,

(1)將△AOB向右平移4個(gè)單位長(zhǎng)度得到△A1O1B1,請(qǐng)畫(huà)出△A1O1B1;

(2)以點(diǎn)A為對(duì)稱(chēng)中心,請(qǐng)畫(huà)出 AOB關(guān)于點(diǎn)A成中心對(duì)稱(chēng)的 A O2 B2,并寫(xiě)點(diǎn)B2的坐標(biāo);

(3)以原點(diǎn)O為旋轉(zhuǎn)中心,請(qǐng)畫(huà)出把AOB按順時(shí)針旋轉(zhuǎn)90°的圖形A2 O B3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓弧().

(1)用直尺和圓規(guī)作出所在圓的圓心;(要求保留作圖痕跡,不寫(xiě)作法)

(2)的中點(diǎn)的距離為m,m,求所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張正方形紙片,剪成四個(gè)大小形狀一樣的小正方形,然后將其中的一個(gè)小正方形再按同樣的方法剪成四個(gè)小正方形,再將其中的一個(gè)小正方形剪成四個(gè)小正方形,如此循環(huán)進(jìn)行下去;

1)填表:

剪的次數(shù)

1

2

3

4

5

正方形個(gè)數(shù)

2)如果剪n次,共剪出多少個(gè)小正方形?

3)如果剪了100次,共剪出多少個(gè)小正方形?

4)觀察圖形,剪了n次,小正方形的邊長(zhǎng)為原來(lái)的 ,面積是原來(lái)的 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的有( 。

1)有理數(shù)分為正有理數(shù)和負(fù)有理數(shù)

2)如果|a|a,那么a0

3)如果a大于b,那么a的倒數(shù)小于b的倒數(shù)

4)若ab0,則的值為3或﹣3

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案