【題目】如圖,,點(diǎn)是線段的一個(gè)三等分點(diǎn),以點(diǎn)為圓心,為半徑的圓交于點(diǎn),交于點(diǎn),連接
(1)求證:是的切線;
(2)點(diǎn)為上的一動(dòng)點(diǎn),連接.
①當(dāng) 時(shí),四邊形是菱形;
②當(dāng) 時(shí),四邊形是矩形.
【答案】(1)見(jiàn)解析;(2)①60°,②120°.
【解析】
(1)連接,由,得到為等邊三角形,得到,即可得到,則結(jié)論成立;
(2)①連接BD,由圓周角定理,得到∠ABD=30°,則∠DBE=60°,又有∠BEP=120°,根據(jù)同旁內(nèi)角互補(bǔ)得到PE//DB,然后證明,即可得到答案;
②由圓周角定理,得∠ABD=60°,得到∠EBD=90°,然后由直徑所對(duì)的圓周角為90°,得到,即可得到答案.
證明:連接,
,
.
,
為等邊三角形,
.
點(diǎn)是的三等分點(diǎn),
,
,
,即,
是的切線.
(2)①當(dāng)時(shí),四邊形是菱形;
如圖,連接BD,
∵,
∴,
∴,
∵AB為直徑,則∠AEB=90°,
由(1)知,
∴,
∴,
∴PE//DB,
∵,,
∴,
∴四邊形是菱形;
故答案為:60°.
②當(dāng)時(shí),四邊形是矩形.
如圖,連接AE、AD、DB,
∵,
∴,
∴,
∵AB是直徑,
∴,
∴四邊形是矩形.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字1,2,3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機(jī)抽取一張卡片,則抽到數(shù)字“2”的概率是___________;
(2)從四張卡片中隨機(jī)抽取2張卡片,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求抽到“數(shù)字和為5”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒,設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2,已知y與t的函數(shù)關(guān)系圖象如圖2所示,請(qǐng)回答:
(1)線段BC的長(zhǎng)為 cm.
(2)當(dāng)運(yùn)動(dòng)時(shí)間t=2.5秒時(shí),P、Q之間的距離是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)、在直線上,且,于點(diǎn),且,以為直徑在的左側(cè)作半圓,于,且.
(1)若半圓上有一點(diǎn),則的最大值為________;
(2)向右沿直線平移得到;
①如圖,若截半圓的的長(zhǎng)為,求的度數(shù);
②當(dāng)半圓與的邊相切時(shí),求平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD中,AB=6,點(diǎn)P是射線BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥PA交直線CD于E,連AE.
(1)如圖1,若BP=2,求DE的長(zhǎng);
(2)如圖2,若AP平分∠BAE,連PD,求tan∠DPE的值;
(3)直線PD,AE交于點(diǎn)F,若BC=4PC,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB、CD是圓O的兩條弦,交點(diǎn)為P.連接AD、BC. OM⊥ AD,ON⊥BC,垂足分別為M、N.連接PM、PN.
圖1 圖2
(1)求證:△ADP ∽△CBP;
(2)當(dāng)AB⊥CD時(shí),探究PMO與PNO的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)AB⊥CD時(shí),如圖2,AD=8,BC=6, ∠MON=120°,求四邊形PMON的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為數(shù)學(xué)實(shí)驗(yàn)“先行示范!保粩(shù)學(xué)活動(dòng)小組帶上高度為1.5m的測(cè)角儀BC,對(duì)建筑物AO進(jìn)行測(cè)量高度的綜合實(shí)踐活動(dòng),如圖,在BC處測(cè)得直立于地面的AO頂點(diǎn)A的仰角為30°,然后前進(jìn)40m至DE處,測(cè)得頂點(diǎn)A的仰角為75°.
(1)求∠CAE的度數(shù);
(2)求AE的長(zhǎng)(結(jié)果保留根號(hào));
(3)求建筑物AO的高度(精確到個(gè)位,參考數(shù)據(jù):,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線:沿軸翻折得到拋物線.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
① 當(dāng)時(shí),求拋物線和圍成的封閉區(qū)域內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù);
② 如果拋物線C1和C2圍成的封閉區(qū)域內(nèi)(包括邊界)恰有個(gè)整點(diǎn),求m取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形和擺放在一起,為公共頂點(diǎn),,若固定不動(dòng),繞點(diǎn)旋轉(zhuǎn),、與邊的交點(diǎn)分別為、(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合).
(1)求證:;
(2)在旋轉(zhuǎn)過(guò)程中,試判斷等式是否始終成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com