【題目】如圖,已知A(-1,0),B(1,0),Cy軸正半軸上一點,點D為第三象限一動點,CDABF,且∠ADB=2BAC

(1)求證:∠ADB與∠ACB互補;

(2)求證:CD平分∠ADB

(3)若在D點運動的過程中,始終有DC=DA+DB,在此過程中,∠BAC的度數(shù)是否變化?如果變化,請說明理由;如果不變,請求出∠BAC的度數(shù).

【答案】(1)證明見解析;(2)證明見解析;(3)BAC=60°.

【解析】

(1)先判斷△ABC是等腰三角形,然后在△ABC中利用三角形內角和定理以及∠ADB=2∠BAC即可得到結論;

(2)過點CAMDA于點M,作CNBD于點N,運用“AAS”證明△CAM≌△CBNCM=CN,根據(jù)“到角的兩邊距離相等的點在角的平分線上”得證;

(3)延長DB至點P,使BP=AD,連接CP,則可得CD=DP,證明△CAD≌△CBP,從而可得 CDP是等邊三角形,從而求∠BAC的度數(shù).

(1)A(-1,0),B(1,0),

OA=OB=1

COAB,

CA=CB

∴∠ABC=BAC,

∵∠ABC+∠BAC+∠ACB=180°∠ADB=2∠BAC,

ADB+∠ACB=180°

∠ADB∠ACB互補;

(2)過點CAMDA于點M,作CNBD于點N,則∠AMC=ANB=90°,

∵∠ADB+AMC+∠ANB+∠MCN=360°

∴∠ADB+∠MCN=180°,

ADB+∠ACB=180°

MCN=∠ACB,

∴∠MCN-∠CAN=ACB-CAN,

∠ACM=∠BCN,

又∵AB=AC,

∴△ACM≌△ABN (AAS),

AM=AN

CD平分∠ADB(到角的兩邊距離相等的點在角的平分線上);

(3)BAC的度數(shù)不變化,

延長DB至點P,使BP=AD,連接CP,

CD=AD+BD,

CD=DP,

∵∠ADB+DBC+∠ACB+∠CAD=360°,∠ADB+∠ACB=180°,

∠CAD+CBD=180°,

∠CBD+∠CBP=180°,

∠CAD=∠CBP,

∵CA=CB,

∴△CAD≌△CBP,

CD=CP,

CD=DP=CP,即△CDP是等邊三角形,

∴∠CDP=60°,

∴∠ADB=2CDP=120°,

∵∠ADB=2∠BAC

∴∠BAC=60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點的中點,點是線段的延長線上的一動點,連接,過點的平行線,與線段的延長線交于點,連接

求證:四邊形是平行四邊形.

,,則在點的運動過程中:

①當________時,四邊形是矩形,試說明理由;

②當________時,四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知煙花彈爆炸后某個殘片的空中飛行軌跡可以看成為二次函數(shù)y=﹣x2+2x+5 圖象的一部分,其中x為爆炸后經(jīng)過的時間(秒),y為殘片離地面的高度(米),請問在爆炸后1秒到6秒之間,殘片距離地面的高度范圍為( 。

A. 0米到8米 B. 5米到8米 C. 到8米 D. 5米到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一座拋物線形拱橋,正常水位橋下面寬度為20米,拱頂距離水平面4米,如圖建立直角坐標系,若正常水位時,橋下水深6米,為保證過往船只順利航行,橋下水面寬度不得小于18米,則當水深超過多少米時,就會影響過往船只的順利航行(

A. 2.76 B. 6.76 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=x2經(jīng)過平移得到拋物線y=ax2+bx,其對稱軸與兩段拋物線所圍成的陰影部分的面積為,則a、b的值分別為( 。

A. , B. ,﹣ C. ,﹣ D. ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l:y=kx+1與拋物線y=x2-4x

(1)求證:直線l與該拋物線總有兩個交點;

(2)設直線l與該拋物線兩交點為A,B,O為原點,當k=-2時,求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+4x.

(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;

(2)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象(列表、描點、連線);

(3)根據(jù)圖象,寫出當y0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCADE中,∠BAC=∠DAE90°,ADAE,ABAC,且BD、E三點在一條直線上.

1)求證:BDCE

2)求∠BEC的度數(shù).

3)寫出BEAE、CE的數(shù)量關系是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,則AC的長是( )

A. B. C. 5 D.

查看答案和解析>>

同步練習冊答案