精英家教網 > 初中數學 > 題目詳情
(2007•鎮(zhèn)江)畫圖、證明:如圖,∠AOB=90°,點C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠AOB的平分線OP;作線段CD的垂直平分線EF,分別與CD、OP相交于E、F;連接OE、CF、DF.
(2)在所畫圖中,
①線段OE與CD之間有怎樣的數量關系:______.
②求證:△CDF為等腰直角三角形.

【答案】分析:(1)根據題意,作∠AOB的平分線OP;作線段CD的垂直平分線EF;
(2)①由題意,OE是直角三角形斜邊上的中線,根據直角三角形的性質直接得到OE=CD;
②△CDF為等腰直角三角形,由EF是垂直平分線容易得到△CDF是等腰三角形,要證明直角三角形比較麻煩,要充分利用△ODE,△OEC是等腰三角形的等角的作用,還有三角形外角的有關結論才能證明.
解答:解:(1)根據題意要求:畫∠AOB的平分線OP,作線段CD的垂直平分線EF;

(2)①OE=CD.(4分)
②方法一:∵EF是線段CD的垂直平分線,
∴FC=FD,(5)
∵△COD為直角三角形,E為CD的中點,
∴OE=CE=CD,
∴∠COE=∠ECO.
設CD與OP相交于點G,
∵∠EOF=45°-∠COE,
∠EFO=90°-∠EGF=90°-(45°+∠ECO)=45°-∠ECO,
∴∠EOF=∠EFO,EF=OE.(6分)
又CE=OE=EF,∠CEF=90°,
∴∠CFE=45°,同理∠DFE=45°;
∴∠CFD=90°,△CDF為等腰直角三角形.(7分)

方法二:過點F作FM⊥OA、FN⊥OB,垂足分別為M、N.(5分)
∵OP是∠AOB的平分線,
∴FM=FN.
又EF是CD的垂直平分線,
∴FC=FD.
∴Rt△CFM≌Rt△DFN(HL),∠CFM=∠DFN.(6分)
在四邊形MFNO中,由∠AOB=∠FMO=∠FNO=90°,得∠MFN=90°,
∴∠CFD=∠CFM+∠MFD=∠DFN+∠MFD=∠MFN=90°,
∴△CDF為等腰直角三角形.(7分)
點評:此題考查等腰三角形的基本性質及判定定理,利用三角形的角平分線和垂直平分線及底邊高三線合一是解題的關鍵,還要利用三角形外角的關系結論.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2007•鎮(zhèn)江)已知拋物線y=ax2+bx+c的對稱軸是經過點(2,0)且與y軸平行的直線,拋物線與x軸相交于點A(1,0),與y軸相交于點B(0,3),其在對稱軸左側的圖象如圖所示.
(1)求拋物線所對應的函數關系式,并寫出拋物線的頂點坐標;
(2)畫出拋物線在對稱軸右側的圖象,并根據圖象,寫出當x為何值時,y<0.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《一次函數》(05)(解析版) 題型:解答題

(2007•鎮(zhèn)江)探索、研究:下圖是按照一定的規(guī)律畫出的一列“樹型”圖,下表的n表示“樹型”圖的序號,an表示第n個“樹型”圖中“樹枝”的個數.
圖:
表:
 n 1
 an 115 
(1)根據“圖”、“表”可以歸納出an關于n的關系式為______.
若直線l1經過點(a1,a2)、(a2,a3),求直線l1對應的函數關系式,并說明對任意的正整數n,點(an,an+1)都在直線l1上.
(2)設直線l2:y=-x+4與x軸相交于點A,與直線l1相交于點M,雙曲線y=(x>0)經過點M,且與直線l2相交于另一點N.
①求點N的坐標,并在如圖所示的直角坐標系中畫出雙曲線及直線l1、l2
②設H為雙曲線在點M、N之間的部分(不包括點M、N),P為H上一個動點,點P的橫坐標為t,直線MP與x軸相交于點Q,當t為何值時,△MQA的面積等于△PMA的面積的2倍又是否存在t的值,使得△PMA的面積等于1?若存在,求出t的值;若不存在,請說明理由.
③在y軸上是否存在點G,使得△GMN的周長最?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年浙江省紹興市紹興縣柯巖中學數學中考模擬試卷(解析版) 題型:解答題

(2007•鎮(zhèn)江)探索、研究:下圖是按照一定的規(guī)律畫出的一列“樹型”圖,下表的n表示“樹型”圖的序號,an表示第n個“樹型”圖中“樹枝”的個數.
圖:
表:
 n 1
 an 115 
(1)根據“圖”、“表”可以歸納出an關于n的關系式為______.
若直線l1經過點(a1,a2)、(a2,a3),求直線l1對應的函數關系式,并說明對任意的正整數n,點(an,an+1)都在直線l1上.
(2)設直線l2:y=-x+4與x軸相交于點A,與直線l1相交于點M,雙曲線y=(x>0)經過點M,且與直線l2相交于另一點N.
①求點N的坐標,并在如圖所示的直角坐標系中畫出雙曲線及直線l1、l2
②設H為雙曲線在點M、N之間的部分(不包括點M、N),P為H上一個動點,點P的橫坐標為t,直線MP與x軸相交于點Q,當t為何值時,△MQA的面積等于△PMA的面積的2倍又是否存在t的值,使得△PMA的面積等于1?若存在,求出t的值;若不存在,請說明理由.
③在y軸上是否存在點G,使得△GMN的周長最?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年江蘇省鎮(zhèn)江市中考數學試卷(解析版) 題型:解答題

(2007•鎮(zhèn)江)探索、研究:下圖是按照一定的規(guī)律畫出的一列“樹型”圖,下表的n表示“樹型”圖的序號,an表示第n個“樹型”圖中“樹枝”的個數.
圖:
表:
 n 1
 an 115 
(1)根據“圖”、“表”可以歸納出an關于n的關系式為______.
若直線l1經過點(a1,a2)、(a2,a3),求直線l1對應的函數關系式,并說明對任意的正整數n,點(an,an+1)都在直線l1上.
(2)設直線l2:y=-x+4與x軸相交于點A,與直線l1相交于點M,雙曲線y=(x>0)經過點M,且與直線l2相交于另一點N.
①求點N的坐標,并在如圖所示的直角坐標系中畫出雙曲線及直線l1、l2
②設H為雙曲線在點M、N之間的部分(不包括點M、N),P為H上一個動點,點P的橫坐標為t,直線MP與x軸相交于點Q,當t為何值時,△MQA的面積等于△PMA的面積的2倍又是否存在t的值,使得△PMA的面積等于1?若存在,求出t的值;若不存在,請說明理由.
③在y軸上是否存在點G,使得△GMN的周長最。咳舸嬖,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年江蘇省鎮(zhèn)江市中考數學試卷(解析版) 題型:解答題

(2007•鎮(zhèn)江)已知拋物線y=ax2+bx+c的對稱軸是經過點(2,0)且與y軸平行的直線,拋物線與x軸相交于點A(1,0),與y軸相交于點B(0,3),其在對稱軸左側的圖象如圖所示.
(1)求拋物線所對應的函數關系式,并寫出拋物線的頂點坐標;
(2)畫出拋物線在對稱軸右側的圖象,并根據圖象,寫出當x為何值時,y<0.

查看答案和解析>>

同步練習冊答案