【題目】如圖,把Rt△OAB置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P是Rt△OAB內(nèi)切圓的圓心.將Rt△OAB沿y軸的正方向作無(wú)滑動(dòng)滾動(dòng).使它的三邊依次與x軸重合.第一次滾動(dòng)后,圓心為P1,第二次滾動(dòng)后圓心為P2…依次規(guī)律,第2019次滾動(dòng)后,Rt△OAB內(nèi)切圓的圓心P2019的坐標(biāo)是( )
A.(673,1)B.(674,1)C.(8076,1)D.(8077,1)
【答案】D
【解析】
由勾股定理得出AB=5,得出Rt△OAB內(nèi)切圓的半徑=1,因此P的坐標(biāo)為(1,1),由題意得出P3的坐標(biāo)(3+5+4+1,1),得出規(guī)律為每滾動(dòng)3次一個(gè)循環(huán),由2019÷3=673,即可得出答案.
∵點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),
∴OA=4,OB=3,
∴AB= =5,
∴Rt△OAB內(nèi)切圓的半徑=(3+4﹣5)=1,
∴P的坐標(biāo)為(1,1),
∵將Rt△OAB沿x軸的正方向作無(wú)滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合,第一次滾動(dòng)后圓心為P1,第二次滾動(dòng)后圓心為P2,…,
∴P3(3+5+4+1,1),即(13,1),
每滾動(dòng)3次一個(gè)循環(huán),
∵2019÷3=673,
∴第2019次滾動(dòng)后,Rt△OAB內(nèi)切圓的圓心P2019的橫坐標(biāo)是673×(3+5+4)+1,
即P2019的橫坐標(biāo)是8077,
∴P2019的坐標(biāo)是(8077,1);
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖所示,則下列結(jié)論:①k<0;②a>0;③當(dāng)x<3時(shí),y1<y2;④當(dāng)y1>0且y2>0時(shí),﹣a<x<4.其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=80°,AC=BC,以點(diǎn)B為旋轉(zhuǎn)中心把△ABC按順時(shí)針旋轉(zhuǎn)α度,得到△A′BC′,點(diǎn)A′恰好落在AC上,連接CC′,則∠ACC′=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半徑長(zhǎng)為1,已知點(diǎn)P是△ABC邊上一動(dòng)點(diǎn)(可以與頂點(diǎn)重合)
(1)若點(diǎn)P到⊙C的切線長(zhǎng)為,則AP的長(zhǎng)度為 ;
(2)若點(diǎn)P到⊙C的切線長(zhǎng)為m,求點(diǎn)P的位置有幾個(gè)?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A為x軸上一點(diǎn),以OA為直徑的作半圓M,點(diǎn)B為OA上一點(diǎn),以OB為邊作□OBDC交半圓M于C,D兩點(diǎn).
(1)連接AD,求證:DA=DB;
(2)若A點(diǎn)坐標(biāo)為(20,0),點(diǎn)B的坐標(biāo)是(16,0),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l:y=﹣1和拋物線L:y=ax2+bx+c(a≠0),拋物線L的頂點(diǎn)為原點(diǎn),且經(jīng)過(guò)點(diǎn)A(2,),直線y=kx+1與y軸交于點(diǎn)F,與拋物線L交于點(diǎn)B(x1,y1),C(x2,y2),且x1<x2.
(1)求拋物線L的解析式;
(2)點(diǎn)P是拋物線L上一動(dòng)點(diǎn).
①以點(diǎn)P為圓心,PF為半徑作⊙P,試判斷⊙P與直線l的位置關(guān)系,并說(shuō)明理由;
②若點(diǎn)Q(2,3),當(dāng)|PQ﹣PF|的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)求證:無(wú)論k為何值,直線l總是與以BC為直徑的圓相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F,G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(2)若改變(1)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC丄BD,順次連接四邊形ABCD各邊中點(diǎn),得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點(diǎn),得到四邊形A2B2C2D2…,如此進(jìn)行下去,得到四邊形AnBnnDn.下列結(jié)論正確的有( 。
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長(zhǎng)是
④四邊形AnBnnDn的面積是.
A.①②B.②③C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國(guó)學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:A.唐詩(shī);B.宋詞;C.論語(yǔ);D.三字經(jīng).比賽形式為“單人組”和“雙人組”.小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中“唐詩(shī)”且小明抽中“宋詞”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com