如圖,在半徑為6,圓心角為90°的扇形OAB的弧AB上,有一個(gè)動(dòng)點(diǎn)P,PH⊥OA,垂足為H,△OPH的重心為G.
(1)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),線(xiàn)段GO、GP、GH中,有無(wú)長(zhǎng)度保持不變的線(xiàn)段?如果有,請(qǐng)指出這樣的線(xiàn)段,并求出相應(yīng)的長(zhǎng)度;
(2)設(shè)PH=x,GP=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△PGH是等腰三角形,試求出線(xiàn)段PH的長(zhǎng).

【答案】分析:(1)由題意可知:重心是三角形中線(xiàn)交點(diǎn),它把中線(xiàn)分為1:2的比例,如果中線(xiàn)長(zhǎng)度不變,題中的三線(xiàn)段長(zhǎng)度也不變.在直角三角形OHP中PO是直角三角形OPH的斜邊,也是半徑是保持不變的所以線(xiàn)段GH保持不變;則根據(jù)直角三角形中斜邊的中線(xiàn)是斜邊的一半可以求得OP中線(xiàn)的長(zhǎng)度,進(jìn)而求得GH的長(zhǎng)度;
(2)延長(zhǎng)PG交OA于C,則y=×PC;分別再直角三角形OPh和直角三角形PHC中運(yùn)用兩次勾股定理即可以求出y關(guān)于x的函數(shù)解析式;
(3)分別討論GH=PG,GH=PH,PH=PG這三種情況,根據(jù)(2)中的解析式可以分別求得x的值.
解答:解:(1)當(dāng)然是GH不變.
延長(zhǎng)HG交OP于點(diǎn)E,
∵G是△OPH的重心,
∴GH=EH,
∵PO是半徑,它是直角三角形OPH的斜邊,它的中線(xiàn)等于它的一半;
∴EH=OP
∴GH=OP)=×6)=2;

(2)延長(zhǎng)PG交OA于C,則y=×PC.
我們令OC=a=CH,
在Rt△PHC中,PC==,
則y=×
在Rt△PHO中,有OP2=x2+(2a)2=62=36,
則a2=9-,
將其代入y=×得y=×=(0<x<6);

(3)如果PG=GH,則y=GH=2,
解方程:x=0,
那GP不等于GH,則不合意義;
如果,PH=GH=2則可以解得:x=2;
如果,PH=PG,則x=y代入可以求得:x=,
綜合上述線(xiàn)段PH的長(zhǎng)是或2.
點(diǎn)評(píng):本題考查了重心的概念以及直角三角形與等腰三角形的性質(zhì).綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內(nèi)接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無(wú)數(shù)個(gè),但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)作一個(gè)內(nèi)接正方形,然后作這個(gè)正方形的內(nèi)切圓,又在這個(gè)內(nèi)切圓中作內(nèi)接正方形,依此作到第n個(gè)內(nèi)切圓,它的半徑是( 。
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖:在半徑為1的圓中,弦CD垂直平分AB,則CD=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在半徑為6cm的圓中,弦AB長(zhǎng)6
3
cm,試求弦AB所對(duì)的圓周角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在半徑為R的圓內(nèi)作一個(gè)內(nèi)接正方形,然后作這個(gè)正方形的內(nèi)切圓,又在這個(gè)內(nèi)切圓中作內(nèi)接正方形,依此作到第n個(gè)內(nèi)切圓,它的半徑是
2
2
nR
2
2
nR

查看答案和解析>>

同步練習(xí)冊(cè)答案