已知:如圖,□ABCD中,點(diǎn)E是AD的中點(diǎn),延長CE交BA的延長線于點(diǎn)F.
求證:AB=AF.
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD且AB=CD.∴∠F=∠2, ∠1=∠D.
∵E為AD中點(diǎn),∴AE="ED."            
在△AEF和△DEC中

∴△AEF≌△DEC. AF="CD."              ∴AB=AF.
 略
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

矩形ABCD的對(duì)角線ACBD相交于點(diǎn)O,AD=2AB=4,現(xiàn)有一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,直角三角板的兩邊與矩形ABCD的邊交于點(diǎn)E,F,如果OE=a,用a的代數(shù)式表示出所有可能的OF的值________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題6分)如圖,在平行四邊形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),且AB=BE,AE的延長線交DC的延長線于點(diǎn)F,若∠F=56°求∠D的度數(shù).
解:

第22題圖

 
 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形OABC中,O是原點(diǎn),OA=8,AB=6,則對(duì)角線AC和BO的交點(diǎn)H的坐標(biāo)為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將y=2x2的函數(shù)圖象向左平移2個(gè)單位長度后,得到的函數(shù)解析式是(  )
A.y=2x2+2B.y=2(x+2)2C.y=(x-2)2D.y=2x2-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在圖1、圖2中,線段AC=CE,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是線段CE的中點(diǎn).四邊形BCGFCDHN都是正方形.AE的中點(diǎn)是M
如圖1,點(diǎn)EAC的延長線上,點(diǎn)N與點(diǎn)G重合時(shí),點(diǎn)M與點(diǎn)C重合,容易證明FM = MH,FMHM;現(xiàn)將圖1中的CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖2,判斷△FMH的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

A.4B.5C.7D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形中,點(diǎn)F在邊BC上,E在邊BA的延長線上.
小題1:若按順時(shí)針方向旋轉(zhuǎn)后恰好與重合.則旋轉(zhuǎn)中心是點(diǎn)        ;
最少旋轉(zhuǎn)了         度;
小題2:在(1)的條件下,若,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)如圖,△ABC中,AD是邊BC上的中線,過點(diǎn)AAE∥BC,過點(diǎn)DDE∥ABAC、AE分別交于點(diǎn)O、點(diǎn)E,連接EC

小題1:(1)求證:AD=EC;
小題2:(2)當(dāng)∠BAC=90°時(shí),求證:四邊形ADCE是菱形;

查看答案和解析>>

同步練習(xí)冊(cè)答案