【題目】如圖,在RtABC中,B=90°,AC=60,AB=30。點D是AC上的動點,過D作DFBC于F,再過F作FE//AC,交AB于E。設(shè)CD=x,DF=y.

(1)求y與x的函數(shù)關(guān)系式;

(2)當(dāng)四邊形AEFD為菱形時,求x的值;

(3)當(dāng)FED是直角三角形時,求x的值.

【答案】(1)(2)40;(3)30.

【解析】

試題(1)由已知,根據(jù)銳角三角函數(shù)定義和特殊角的三角函數(shù)值可得C=30°,從而在RtCDF中,再應(yīng)用銳角三角函數(shù)定義和特殊角的三角函數(shù)值可得y與x的函數(shù)關(guān)系式.

(2)根據(jù)菱形四邊相等的性質(zhì),由AD=DF即AC-CD=DF列方程求解.

(3)首先判斷FED是直角三角形只有FDE=90°,得出,解之即為所求.

試題解析:(1)∵∠B=90°,AC=60,AB=30,

.∴∠C=30°..

y與x的函數(shù)關(guān)系式為.

(2)當(dāng)四邊形AEFD為菱形時,有AD=DF,

AC-CD=DF,即,解得x=40.

當(dāng)四邊形AEFD為菱形時,x=40.

(3)如圖,當(dāng)FED直角三角形是時,只能是FDE=90°,

DFBC,B=90°,DF//AB.

FE//AC,四邊形AEFD為平行四邊形. AE=DF.

由DFBC得2=90°,∴∠1=2. DE//BC.

∴∠3=B=90°,4=C=30°.

在RtBOC中,,即60-x= x,

x=30.

當(dāng)FED是直角三角形時,x=30.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點都在網(wǎng)格線交點處的三角形, 是一個格點三角形.

在圖中,請判斷是否相似,并說明理由;

在圖中,以O為位似中心,再畫一個格點三角形,使它與的位似比為21

在圖中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系中,A1,4)、B3,1)、C9,7)、D13,1),若以CD為邊的三角形與OAB位似,則這兩個三角形的位似中心為( 。

A. (0,0) B. (3,4)或(﹣6,2

C. (5,3)或(-7,1 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對稱軸與y2交于點A(﹣1,5),點A與y1的頂點B的距離是4.

(1)求y1的解析式;

(2)若y2隨著x的增大而增大,且y1與y2都經(jīng)過x軸上的同一點,求y2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點A1,A2,A3和點C1,C2,C3分別在直線y=x+1x軸上,則點Bn的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是矩形ABCD的一邊AD的中點,F,連接AF;若,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,用直尺和圓規(guī)作∠BAD的平分線AGBC于點E,若BF6,AB5,則∠AEB的正切值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在網(wǎng)格中的位置如圖所示(每個小正方形邊長為1),ADBCD,下列選項中,錯誤的是(  )

A. sinαcosα B. tanC2 C. sinβ D. tanα1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用細線懸掛一個小球,小球在豎直平面內(nèi)的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,AOB=66°,求細線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

【答案】15cm

【解析】

試題設(shè)細線OB的長度為xcm,作ADOBD,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函數(shù)得出方程,解方程即可.

試題解析:設(shè)細線OB的長度為xcm,作ADOBD,如圖所示:

∴∠ADM=90°,

∵∠ANM=DMN=90°,

∴四邊形ANMD是矩形,

AN=DM=14cm,

DB=14﹣5=9cm,

OD=x﹣9,

RtAOD中,cosAOD=,

cos66°==0.40,

解得:x=15,

OB=15cm.

型】解答
結(jié)束】
20

【題目】已知:如圖,在半徑為中,是兩條直徑,的中點,的延長線交于點,且,連接.

1)求證:;

2)求的長.

查看答案和解析>>

同步練習(xí)冊答案