【題目】某校為了豐富學生的課外體育活動,購買了排球和跳繩.已知排球的單價是跳繩的單價的3倍,購買跳繩共花費750元,購買排球共花費900元,購買跳繩的數(shù)量比購買排球的數(shù)量多30個,求跳繩的單價.
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的方格地面上,標有編號A,B,C的3個小方格地面是空地,另外6個小方格地面是草坪,除此以外小方格地面完全相同.
(1)一只自由飛行的鳥,將隨意地落在圖中的方格地面上,問小鳥落在草坪上的概率是多少?
(2)現(xiàn)從3個小方格空地中任意選取2個種植草坪,則剛好選取A和B的2個小方格空地種植草坪的概率是多少(用樹形圖或列表法求解)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A在第一象限,點B,C的坐標為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交x軸于點P.若△ABC與△A'B'C'關(guān)于點P成中心對稱,則點A'的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知l1//l2,射線MN分別和直線l1,l2交于點A,B,射線ME分別和直線l1,l2交于點C,D,點P在射線MN上運動(P點與A,B,M三點不重合),設∠PDB=α ,∠PCA=β ,∠CPD=γ .
(1)如果點P在A,B兩點之間運動時,α,β,γ之間有何數(shù)量關(guān)系?請說明理由;
(2)如果點P在A,B兩點之外運動時,α,β,γ之間有何數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角平分線CF于點F.請你認真閱讀下面關(guān)于這個圖的探究片段,完成所提出的問題.
(1)探究1:小強看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個三角形全等,但△ABE和△ECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點E是邊BC的中點,因此可以選取AB的中點M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強寫出了如下的證明過程:
證明:如圖1,取AB的中點M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點E,M分別為正方形的邊BC和AB的中點
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強繼續(xù)探索,如圖2,若把條件“點E是邊BC的中點”改為“點E是邊BC上的任意一點”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結(jié)論.
(3)探究3:小強進一步還想試試,如圖3,若把條件“點E是邊BC的中點”改為“點E是邊BC延長線上的一點”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請你完成證明過程給小強看,若不成立請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=∠CGE.其中正確的結(jié)論是( )
A. ②③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個形狀、大小完全相同的含有30°、60°的直角三角板如圖①放置,PA、PB與直線MN重合,且三角板PAC、三角板PBD均可繞點P逆時針旋轉(zhuǎn).
(1)直接寫出∠DPC的度數(shù).
(2)如圖②,在圖①基礎(chǔ)上,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉(zhuǎn),轉(zhuǎn)速為5°/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉(zhuǎn),轉(zhuǎn)速為1°/秒,(當PA轉(zhuǎn)到與PM重合時,兩三角板都停止轉(zhuǎn)動),在旋轉(zhuǎn)過程中,當PC與PB重合時,求旋轉(zhuǎn)的時間是多少?
(3)在(2)的條件下,PC、PB、PD三條射線中,當其中一條射線平分另兩條射線的夾角時,請直接寫出旋轉(zhuǎn)的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角板 (∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方,將如圖中的三角板繞點O以每秒3°的速度沿順時針方向旋轉(zhuǎn)一周。
(1)幾秒后ON與OC重合?
(2)如圖,經(jīng)過t秒后,MN∥AB,求此時t的值。
(3)若三角板在轉(zhuǎn)動的同時,射線OC也繞O點以每秒6°的速度沿順時針方向旋轉(zhuǎn)一周,那么經(jīng)過多長時間OC與OM重合?請畫圖并說明理由。
(4)在(3)的條件下,求經(jīng)過多長時間OC平分∠MOB?請畫圖并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com