【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE.

(1)若∠BAE=40°,求∠C的度數(shù);
(2)若△ABC周長13cm,AC=6cm,求DC長.

【答案】
(1)解:∵AD垂直平分BE,EF垂直平分AC,

∴AB=AE=EC,

∴∠C=∠CAE,

∵∠BAE=40°,

∴∠AED=70°,

∴∠C= ∠AED=35°


(2)解:∵△ABC周長13cm,AC=6cm,

∴AB+BE+EC=7cm,

即2DE+2EC=7cm,

∴DE+EC=DC=3.5cm


【解析】(1)根據(jù)線段垂直平分線和等腰三角形性質(zhì)得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根據(jù)已知能推出2DE+2EC=7cm,即可得出答案.
【考點精析】利用線段垂直平分線的性質(zhì)對題目進行判斷即可得到答案,需要熟知垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某自主服裝品牌設計出了一種西裝和領帶,西裝每套定價200元,領帶每條定價40元.在推廣服裝品牌初期開展促銷活動,可以同時向客戶提供兩種優(yōu)惠方案:

方案買一套西裝送一條領帶;

方案西裝和領帶都按定價的90%付款.

現(xiàn)某客戶要到該服裝品牌購買西裝20套,領帶條(超過20).

1)若該客戶按方案購買,需付款_ _____元(用含的式子表示);

若該客戶按方案購買,需付款__ ____元(用含的式子表示);

2)若=30,通過計算說明此時按哪種方案購買較為合算?

3)當=30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計算出所需的錢數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市居民生活用電基本價格為每千瓦時0.60元,若每月用電量超過70千瓦時,超出部分按照基本電價的120%收費.
(1)若小明家用電量用a表示,請用代數(shù)式分別表示出用電量不超過70千瓦時和超過70千瓦時的收費標準.
(2)若該戶居民8月份用電量為100千瓦時,則應收費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 lx 軸, y 軸分別交于 M,N 兩點,且 OM=ON=3.

(1)求這條直線的函數(shù)表達式;

(2)Rt△ ABC 與直線 l 在同一個平面直角坐標系內(nèi),其中∠ABC=90°,AC= 2 ,A(1,0),B(3,0),將△ABC 沿 x 軸向左平移,當點 C 落在直線 l 上時,求線段 AC 掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明用的練習本可以到甲商店購買,也可以到乙商店購買,已知兩商店的標價都是每本1元,甲商店的優(yōu)惠條件是:購買10本以上,從第11本開始按標價的70%賣;乙商店的優(yōu)惠條件是:從第一本按標價的80%.

1)小明要買20本時,到哪個商店較省錢?

2)買多少本時給兩個商店付相等的錢?

3)小明現(xiàn)有40元錢,最多可買多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若3xn+5y與﹣x3y是同類項,則n=( )
A.2
B.﹣5
C.﹣2
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣0.5x2+bx+3,與x軸交于點B(﹣2,0)和C,與y軸交于點A,點M在y軸上.

(1)求拋物線的解析式;

(2)連結(jié)BM并延長,交拋物線于D,過點D作DE⊥x軸于E.當以B、D、E為頂點的三角形與△AOC相似時,求點M的坐標;

(3)連結(jié)BM,當∠OMB+∠OAB=∠ACO時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】12﹣(﹣18)+(﹣7)﹣15.

查看答案和解析>>

同步練習冊答案