【題目】如圖,已知點(diǎn)B在線(xiàn)段AC上,點(diǎn)E在線(xiàn)段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn),現(xiàn)有如下結(jié)論:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正確的結(jié)論是 (只填序號(hào)).
【答案】②③④
【解析】
試題分析:①由三角形內(nèi)最多只有一個(gè)直角得出該結(jié)論不成立;
②通過(guò)證明△ABE≌△DBC得出AE=DC,根據(jù)直角三角形斜邊上中線(xiàn)的特點(diǎn),可得出結(jié)論成立;
③通過(guò)證明△ABM≌△DBN得出∠DBN=∠ABM,通過(guò)等量替換得出結(jié)論成立;
④由②中的三角形全等可知其面積也相等,故其面積的一半也相等,結(jié)論成立.
解:①∵∠ABD=∠DBC,且點(diǎn)B在線(xiàn)段AC上,
∴∠ABD=∠DBC=180°÷2=90°,
在△BDC中,∠DBC=90°
∴∠BDN=∠BDC<90°(三角形中最多只有一個(gè)直角存在),
∴∠ABD≠∠BDN,
即①不成立.
②在直角△ABE與直角△DBC中,,
∴△ABE≌△DBC(SAS),
∴AE=DC,
又M,N分別是AE,CD的中點(diǎn),
∴BM=AE,BN=DC,
∴BM=BN,
即②成立.
③在△ABM和△DBN中,,
∴△ABM≌△DBN,
∴∠DBN=∠ABM,
∴∠MBN=∠MBD+∠DBN=∠MBD+∠ABM=∠ABD=90°,
∴MB⊥NB,
即③成立.
④∵M,N分別是AE,CD的中點(diǎn),
∴S△ABM=S△ABE,S△BCN=S△DBC,
由②得知,△ABE≌△DBC,
∴S△ABM=S△BCN,
即④成立.
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時(shí),若船速為26千米/時(shí),水速為2千米/時(shí),求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)下列四組數(shù)據(jù)中,不能作為直角三角形的三邊長(zhǎng)是()
A.3,4,5 B.3,5,7
C.5,12,13 D.6,8,10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D是AB邊上一點(diǎn),以CD為邊作等邊三角形CDE,使點(diǎn)E,A在直線(xiàn)DC同側(cè),連接AE.求證:
(1)△AEC≌BDC;
(2)AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=α(30°<α<45°),∠AOB的余角為∠AOC,∠AOB的補(bǔ)角為∠BOD,OM平分∠AOC,ON平分∠BOD.
(1)如圖,當(dāng)α=40°,且射線(xiàn)OM在∠AOB的外部時(shí),用直尺、量角器畫(huà)出射線(xiàn)OD,ON的準(zhǔn)確位置;
(2)求(1)中∠MON的度數(shù),要求寫(xiě)出計(jì)算過(guò)程;
(3)當(dāng)射線(xiàn)OM在∠AOB的內(nèi)部時(shí),用含α的代數(shù)式表示∠MON的度數(shù).(直接寫(xiě)出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABO的面積;
(3)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式kx+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列判斷:①在數(shù)軸上,原點(diǎn)兩旁的兩個(gè)點(diǎn)所表示的數(shù)都是互為相反數(shù);②任何正數(shù)必定大于它的倒數(shù);③5ab,,都是整式;④x2﹣xy+y2是按字母y的升冪排列的多項(xiàng)式,其中判斷正確的是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A、沒(méi)有最小的有理數(shù) B、0既是正數(shù)也是負(fù)數(shù)
C、整數(shù)只包括正整數(shù)和負(fù)整數(shù) D、-1是最大的負(fù)有理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩輛汽車(chē)同時(shí)分別從A、B兩城沿同一條高速公路勻速駛向C城.已知A、C兩城的距離為360km,B、C兩城的距離為320km,甲車(chē)比乙車(chē)的速度快10km/h,結(jié)果兩輛車(chē)同時(shí)到達(dá)C城.設(shè)乙車(chē)的速度為xkm/h.
(1)根據(jù)題意填寫(xiě)下表:
行駛的路程(km) | 速度(km/h) | 所需時(shí)間(h) | |
甲車(chē) | 360 |
|
|
乙車(chē) | 320 | x |
|
(2)求甲、乙兩車(chē)的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com