【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.
【答案】①證明:連接OD. ∵OA=OD,
∴∠A=∠ADO.
∵AD∥OC,
∴∠A=∠BOC,∠ADO=∠COD,
∴∠BOC=∠COD.
∵在△OBC與△ODC中,
,
∴△OBC≌△ODC(SAS),
∴∠OBC=∠ODC,
又∵BC是⊙O的切線,
∴∠OBC=90°,
∴∠ODC=90°,
∴DC是⊙O的切線;
②解:連接BD.
∵在△ADB與△ODC中, ,
∴△ADB∽△ODC,
∴AD:OD=AB:OC,
∴ADOC=ODAB=r2r=2r2 , 即2r2=8,
故r=2.
【解析】①連接OD,要證明DC是⊙O的切線,只要證明∠ODC=90°即可.根據(jù)題意,可證△OCD≌△OCB,即可得∠CDO=∠CBO=90°,由此可證DC是⊙O的切線;②連接BD,OD.先根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似證明△ADB∽△ODC,再根據(jù)相似三角形對(duì)應(yīng)邊成比例即可得到r的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=4,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△A1BC1 , 則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,已知∠B和∠C的平分線相交于點(diǎn)F,經(jīng)過(guò)點(diǎn)F作DE//BC,交AB于D,交AC于點(diǎn)E,若BD+CE=9,則線段DE的長(zhǎng)為( )
A. 9 B. 8 C. 7 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,E是DC邊上一個(gè)動(dòng)點(diǎn),F是AB邊上一點(diǎn),∠AEF=30°.設(shè)DE=x,圖中某條線段長(zhǎng)為y,y與x滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的( ).
A. 線段EC B. 線段AE C. 線段EF D. 線段BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)M在CD邊上,點(diǎn)N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點(diǎn)E,連接BE,AC,交于F點(diǎn).
(1) ①依題意補(bǔ)全圖形;
②求證:BE⊥AC.
(2)請(qǐng)?zhí)骄烤段BE,AD,CN所滿足的等量關(guān)系,并證明你的結(jié)論.
(3)設(shè)AB=1,若點(diǎn)M沿著線段CD從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D,則在該運(yùn)動(dòng)過(guò)程中,線段EN所掃過(guò)的面積為______________(直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E、F分別在AB、BC上,△DEF為等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七中育才學(xué)校排球活動(dòng)月即將開(kāi)始,其中有一項(xiàng)為墊球比賽,體育組為了了解七年級(jí)學(xué)生的訓(xùn)練情況,隨機(jī)抽取了七年級(jí)部分學(xué)生進(jìn)行1分鐘墊球測(cè)試,并將這些學(xué)生的測(cè)試成績(jī)(即1分鐘的個(gè)數(shù),且這些測(cè)試成績(jī)都在60~180范圍內(nèi))分段后給出相應(yīng)等級(jí),具體為:測(cè)試成績(jī)?cè)?/span>60~90范圍內(nèi)的記為D級(jí),90~120范圍內(nèi)的記為C級(jí),120~150范圍內(nèi)的記為B級(jí),150~180范圍內(nèi)的記為A級(jí).現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,其中在扇形統(tǒng)計(jì)圖中A級(jí)對(duì)應(yīng)的圓心角為90°,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,A級(jí)所占百分比為 ;
(2)在這次測(cè)試中,一共抽取了 名學(xué)生,并補(bǔ)全頻數(shù)分布直方圖;
(3)在(2)中的基礎(chǔ)上,在扇形統(tǒng)計(jì)圖中,求D級(jí)對(duì)應(yīng)的圓心角的度數(shù);
(4)若A,B,C,D等級(jí)的平均成績(jī)分別為165、135、105、75個(gè),你能估算出學(xué)校七年級(jí)同學(xué)的平均水平嗎?若能,請(qǐng)計(jì)算出來(lái).(保留準(zhǔn)確值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com