如圖,已知:在菱形ABCD中,分別延長AB、AD到E、F,使得BE=DF,連結EC、FC.

求證:EC=FC.

答案:
提示:

證△BEC≌△DFC(SAS).


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知:在?ABCD中,E、F分別是BC、AD的中點.
(1)求證:△ABE≌△CDF;
(2)連AC,當四邊形AECF是菱形時,△ABC應滿足條件
 
(只需填一個條件即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,已知兩個菱形ABCD和EFGH是以坐標原點O為位似中心的位似圖形(菱形ABCD與菱形EFGH的位似比為2:1),∠BAD=120°,對角線均在坐標軸上,拋物線y=
13
x2經過AD的中點M.
(1)填空:A點坐標為
 
,D點坐標為
 
;
(2)操作:如圖②,固定菱形ABCD,將菱形EFGH繞O點順時針方向旋轉α度角(0°<α<90°),并延長OE交AD于P,延長OH交CD于Q.
探究1:在旋轉的過程中是否存在某一角度α,使得四邊形AFEP是平行四邊形?若存在,請推斷出α的值;若不存在,說明理由;
探究2:設AP=x,四邊形OPDQ的面積為s,求s與x之間的函數(shù)關系式,并指出x的取值范圍.精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南昌)如圖,已知兩個菱形ABCD、CEFG,其中點A、C、F在同一直線上,連接BE、DG.
(1)在不添加輔助線時,寫出其中的兩對全等三角形;
(2)證明:BE=DG.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘