【題目】如圖,△ABC中,AB=AC.
(1)用無(wú)刻度的直尺和圓規(guī)作△ABC的外接圓;(保留畫(huà)圖痕跡)
(2)若AB=10,BC=16,求△ABC的外接圓半徑.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)用尺規(guī)作邊AB和AC的垂直平分線,兩線相交于點(diǎn)O進(jìn)而作出△ABC的外接圓;
(2)根據(jù)垂徑定理和勾股定理即可求出外接圓的半徑.
解:(1)如圖所示即為△ABC的外接圓
(2)連接OB、OA,交BC于點(diǎn)D,
∵OB=OA,
∴AD⊥BC,
根據(jù)垂徑定理,得
BD=DC=BC=8,∠ODB=90°,
在在Rt△ABD中,根據(jù)勾股定理,得
在Rt△BOD中,根據(jù)勾股定理,得
OB2=OD2+BD2,
即OB2=(OB﹣6)2+82
解得OB= .
答:△ABC的外接圓半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2+4x+3.
(1)求出該拋物線對(duì)稱軸和頂點(diǎn)坐標(biāo).
(2)在所給的平面直角坐標(biāo)系中用描點(diǎn)法畫(huà)出這條拋物線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問(wèn)題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,CD⊥AB于點(diǎn)D,CD=3.點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,過(guò)點(diǎn)P作AC的垂線,過(guò)點(diǎn)Q作AC的平行線,兩線交于點(diǎn)E.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段PQ的長(zhǎng).(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)E落在邊AB上時(shí),求t的值.
(3)當(dāng)△PQE與△ACD重疊部分圖形是四邊形時(shí),直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,弦AB、CD相交于點(diǎn)E,且AB=CD,∠BED=α(0°<α<180°).有下列結(jié)論:①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=.其中一定成立的個(gè)數(shù)為( )
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則cos∠AOD=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(知識(shí)回顧)
我們把連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線,并且有:三角形的中位線平行于第三邊,并且等于第三邊的一半.
(定理證明)
將下列的定理證明補(bǔ)充完整:
已知:如圖①,在△ABC中,點(diǎn)D、E分別是邊AB、AC中點(diǎn),連結(jié)DE.
求證:
證明:
(定理應(yīng)用)
如圖②,在△ABC中,AB=10,∠ABC=60°,點(diǎn)P、Q分別是邊AC、BC的中點(diǎn),連結(jié)PQ.
(1)線段PQ的長(zhǎng)為 .
(2)以點(diǎn)C為一個(gè)端點(diǎn)作線段CD(CD與AB不平行),連結(jié)AD,取AD的中點(diǎn)M,連結(jié)PM、QM.
①在圖②中補(bǔ)全圖形.
②當(dāng)∠PQM=∠PMQ時(shí),求CD的長(zhǎng).
③在②的條件下,當(dāng)△PQM面積最大時(shí),直接寫(xiě)出∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OP1A1B1,A1P2A2B2,A2P3A3B3,An﹣1PnAnBn都是正方形,其中點(diǎn)A1、A2、A3…An在y軸上,點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)在反比例函數(shù)y=(x>0)的圖象上,已知B1(﹣1,1),則點(diǎn)Pn的坐標(biāo)為( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com