【題目】如圖,在平面直角坐標(biāo)系中,直線y=x﹣4與拋物線y=+bx+c交于坐標(biāo)軸上兩點(diǎn)A、C,拋物線與x軸另一交點(diǎn)為點(diǎn)B;
(1)求拋物線解析式;
(2)若動(dòng)點(diǎn)D在直線AC下方的拋物線上;
①作直線BD,交線段AC于點(diǎn)E,交y軸于點(diǎn)F,連接AD;求△ADE與△CEF面積差的最大值,及此時(shí)點(diǎn)D的坐標(biāo);
②如圖2,作DM⊥直線AC,垂足為點(diǎn)M,是否存在點(diǎn)D,使△CDM中某個(gè)角恰好是∠ACO的一半?若存在,直接寫出點(diǎn)D的橫坐標(biāo);若不存在,說明理由.
【答案】(1)y=;
(2)①當(dāng)m=時(shí),S△ADE﹣S△CEF的最大值為,此時(shí)點(diǎn)D坐標(biāo)為(,);
②存在,點(diǎn)D的橫坐標(biāo)為點(diǎn)D橫坐標(biāo)為或.
【解析】
(1)先求出C(0,﹣4)A(3,0),然后代入y=+bx+c,從而求出拋物線解析式;
(2)①設(shè)D(m,),則tan∠ABD=,然后用m的代數(shù)式表示△ADE與△CEF面積差,利用二次函數(shù)最值求出最大值;
②作∠ACO的平分線CP交x軸于點(diǎn)P,過P作PH⊥AC于點(diǎn)H.求出tan∠PCH=,然后分兩種情況討論:Ⅰ.當(dāng)∠MCD=∠ACO=∠PCH時(shí),Ⅱ.當(dāng)∠MDC=∠ACO=∠PCH時(shí).
(1)對于y=x﹣4,令x=0,則y=﹣4所以C(0,﹣4);
令y=0,則x=3,
∴A(3,0);
把點(diǎn)A、C坐標(biāo)代入拋物線解析式,
得:解得,
∴拋物線解析式為y=;
(2)設(shè)D(m,),0<m<3
①連接OD,因?yàn)?/span>B(﹣1,0),D(m,)
tan∠ABD=,
∴OF=﹣(m﹣3),
又OA=3,OC=4,
∴S△ADE﹣S△CEF=S四邊形AOFD﹣S△AOC=AO|yD|+OF|xD|﹣OAOC
=[3(﹣m2+m+4)﹣(m﹣3)m﹣3×4]
=﹣m2+6m
=﹣(m﹣)2+,
所以當(dāng)m=時(shí),S△ADE﹣S△CEF的最大值為,此時(shí)點(diǎn)D坐標(biāo)為;
②存在,點(diǎn)D的橫坐標(biāo)為點(diǎn)D橫坐標(biāo)為或.
作∠ACO的平分線CP交x軸于點(diǎn)P,過P作PH⊥AC于點(diǎn)H.
則CH=CO=4,OP=PH,
設(shè)OP=PH=x,則PA=3﹣x,
∵OC=4,OA=3,
∴AC=5,AH=1,
在Rt△PHA中,
PH2+AH2=AP2,
即/span>x2+12=(3﹣x)2,
解得x=,
∴tan∠PCH=,
過點(diǎn)D作DG⊥x軸于點(diǎn)G,過點(diǎn)M作ME∥x軸,與y軸交于點(diǎn)E,與DG交于點(diǎn)F.
設(shè)M(m,),則ME=m,FG=OE=,CE=,
∵DM⊥直線AC,
∴△CEM∽△MFD,
∴,
Ⅰ.當(dāng)∠MCD=∠ACO=∠PCH時(shí),
tan∠MCD=tan∠PCH=,
∴,即,
∴,
∴MF=CE=,DF=ME=,
∴EF=EM+MF=m+=,DG=DF+FG=m+()=﹣m+4,
∴D(,m﹣4),
將點(diǎn)D坐標(biāo)代入y=,
m﹣4=,
解得m=0(舍去)或m=
Ⅱ.當(dāng)∠MDC=∠ACO=∠PCH時(shí),
tan∠MDC=tan∠PCH=,
即,
∴,
MF=4m,DF=3m,
∴EF=EM+MF=m+4m=5m,
DG=DF+FG=3m﹣,
∴D(5m, ),
將點(diǎn)D坐標(biāo)代入y=,
,
解得x=0(舍去)或x=;
綜上,點(diǎn)D橫坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市精準(zhǔn)扶貧工作已經(jīng)進(jìn)入攻堅(jiān)階段,貧困的張大爺在某單位的幫扶下,把一片坡地改造后種植了大櫻桃.今年正式上市銷售,在銷售30天中,第一天賣出20千克,為了擴(kuò)大銷量,在一段時(shí)間內(nèi)采取降價(jià)措施,每天比前一天多賣出4千克.當(dāng)售價(jià)不變時(shí),銷售量也不發(fā)生變化.已知種植銷售大櫻桃的成本為18元/千克,設(shè)第天的銷售價(jià)元/千克,與函數(shù)關(guān)系如下表:
表一
天數(shù) | 1 | 2 | 3 | …… | …… | 20 |
售價(jià)(元/千克) | 37.5 | 37 | 36.5 | …… | …… | 28 |
表二
天數(shù) | 21 | 22 | …… | …… | 30 |
售價(jià)(元/千克) | 28 | 28 | …… | …… | 28 |
(1)求與函數(shù)解析式;
(2)求銷售大櫻桃第幾天時(shí),當(dāng)天的利潤最大?最大利潤是多少?
(3)銷售大櫻桃的30天中,當(dāng)天利潤不低于
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)分別進(jìn)行6次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
對他們的訓(xùn)練成績作如下分析,其中說法正確的是( 。
A. 他們訓(xùn)練成績的平均數(shù)相同 B. 他們訓(xùn)練成績的中位數(shù)不同
C. 他們訓(xùn)練成績的眾數(shù)不同 D. 他們訓(xùn)練成績的方差不同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是上半圓的弦,過點(diǎn)作的切線交的延長線于點(diǎn),過點(diǎn)作切線的垂線,垂足為,且與交于點(diǎn),設(shè),的度數(shù)分別是.
用含的代數(shù)式表示,并直接寫出的取值范圍;
連接與交于點(diǎn),當(dāng)點(diǎn)是的中點(diǎn)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒假中,小王向小李借一本數(shù)學(xué)培優(yōu)資料,但相互找不到對方的家,電話中兩人商量,走兩家之間長度為2400米的一條路,相向而行.小李在小王出發(fā)5分鐘后帶上數(shù)學(xué)培優(yōu)資料出發(fā).在整個(gè)行走過程中,兩人均保持各自的速度勻速行走.兩人相距的路程y(單位:米)與小王出發(fā)的時(shí)間x(單位:分)之間的關(guān)系如圖所示,則兩人相遇時(shí),小李走了_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點(diǎn)P從點(diǎn)A出發(fā)沿A→B→C路徑勻速運(yùn)動(dòng)到點(diǎn)C,到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)P作PQ⊥AC于點(diǎn)Q. 若△APQ的面積為y,AQ的長為x,則下列能反映y與x之間的大致圖象是 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:
實(shí)例一:1876年,美國總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由四邊形得,化簡得:.
實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于的方程的圖解法是:畫,使,,,再在斜邊上截取,則的長就是該方程的一個(gè)正根(如實(shí)例二圖).
根據(jù)以上閱讀材料回答下面的問題:
(1)如圖1,請利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是 ,乙圖要證明的數(shù)學(xué)公式是 ,體現(xiàn)的數(shù)學(xué)思想是 ;
(2)如圖2,按照實(shí)例二的方式構(gòu)造,連接,請用含字母、的代數(shù)式表示的長,的表達(dá)式能和已學(xué)的什么知識相聯(lián)系;
(3)如圖3,已知,為直徑,點(diǎn)為圓上一點(diǎn),過點(diǎn)作于點(diǎn),連接,設(shè),,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上.將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)計(jì)算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com