【題目】如圖,頂點(diǎn)為P(4,-4)的二次函數(shù)圖象經(jīng)過(guò)原點(diǎn)(0,0),點(diǎn)A在該圖象上,OA交其對(duì)稱軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對(duì)稱,連接AN、ON.
(1)求該二次函數(shù)的關(guān)系式;
(2)若點(diǎn)A的坐標(biāo)是(6,-3),求△ANO的面積;
(3)當(dāng)點(diǎn)A在對(duì)稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動(dòng)時(shí),請(qǐng)解答下面問(wèn)題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請(qǐng)求出所有符合條件的點(diǎn)A的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
【答案】(1)
(2)12
(3)相似三角形的基本知識(shí)推出該角度的相等,不能
【解析】試題分析:(1)∵二次函數(shù)圖象的頂點(diǎn)為P(4,-4),∴設(shè)二次函數(shù)的關(guān)系式為。
又∵二次函數(shù)圖象經(jīng)過(guò)原點(diǎn)(0,0),∴,解得。
∴二次函數(shù)的關(guān)系式為,即。(2分)
(2)設(shè)直線OA的解析式為,將A(6,-3)代入得,解得。
∴直線OA的解析式為。
把x=4代入得y=-2。∴M(4,-2)。
又∵點(diǎn)M、N關(guān)于點(diǎn)P對(duì)稱,∴N(4,-6),MN=4。
∴。(3分)
(3)①證明:過(guò)點(diǎn)A作AH⊥于點(diǎn)H,, 與x軸交于點(diǎn)D。則
設(shè)A(),
則直線OA的解析式為。
則M(),N(),H()。
∴OD=4,ND=,HA=,NH=。
∴。
∴ 。∴∠ANM=∠ONM。(2分)
②不能。理由如下:分三種情況討論:
情況1,若∠ONA是直角,由①,得∠ANM=∠ONM=450,
∴△AHN是等腰直角三角形。∴HA=NH,即。
整理,得,解得。
∴此時(shí),點(diǎn)A與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠ONA是直角。
情況2,若∠AON是直角,則。
∵,
∴。
整理,得,解得, 。
∴此時(shí),故點(diǎn)A與原點(diǎn)或與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠AON是直角。
情況3,若∠NAO是直角,則△AMN∽△DMO∽△DON,∴。
∵OD=4,MD=,ND=,∴。
整理,得,解得。
∴此時(shí),點(diǎn)A與點(diǎn)P重合。故此時(shí)不存在點(diǎn)A,使∠ONA是直角。
綜上所述,當(dāng)點(diǎn)A在對(duì)稱軸右側(cè)的二次函數(shù)圖象上運(yùn)動(dòng)時(shí),△ANO不能成為直角三角形。(3分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,解答下列問(wèn)題.
例:當(dāng)a>0時(shí),如a=6,則|a|=|6|=6,故此時(shí)|a|是它本身;當(dāng)a=0時(shí),|a|=0,故此時(shí)|a|是零;
當(dāng)a<0時(shí),如a=﹣6,則|a|=|﹣6|=6=﹣(﹣6),故此時(shí)|a|是它的相反數(shù).
綜上所述,|a|可分三種情況,即|a|=
這種分析方法滲透了數(shù)學(xué)的分類討論思想.
問(wèn):
(1)請(qǐng)仿照例中的分類討論的方法,分析二次根式 的各種展開的情況.
(2)猜想 與|a|的大小關(guān)系是 |a|.
(3)當(dāng)1<x<2時(shí),試化簡(jiǎn): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】線段AB的長(zhǎng)為5,點(diǎn)A在平面直角坐標(biāo)系中的坐標(biāo)為(3,﹣2),點(diǎn)B的坐標(biāo)為(3,x),則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象經(jīng)過(guò)點(diǎn)A(1,2)和點(diǎn)B(m,n)(m>1),過(guò)點(diǎn)B作y軸的垂線,垂足為C.
(1)求該反比例函數(shù)解析式;
(2)當(dāng)△ABC面積為2時(shí),求點(diǎn)B的坐標(biāo).
(3)P為線段AB上一動(dòng)點(diǎn)(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點(diǎn)P,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,D、E分別是AB,AC上的點(diǎn),AB=AC,AD=AE,然后將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度,連接BD,CE,得到圖②,將BD,CE分別延長(zhǎng)至M,N,使DM= BD,EN= CE,連接AM,AN,MN得到圖③,請(qǐng)解答下列問(wèn)題:
(1)在圖②中,BD與CE的數(shù)量關(guān)系是;
(2)在圖③中,猜想AM與AN的數(shù)量關(guān)系,∠MAN與∠BAC的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在矩形ABCD中,動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿折線AD﹣DC﹣CB運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí)停止.已知?jiǎng)狱c(diǎn)P在AD、BC上的運(yùn)動(dòng)速度為1cm/s,在DC上的運(yùn)動(dòng)速度為2cm/s.△PAB的面積y(cm2)與動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間t(s)的函數(shù)關(guān)系圖象如圖②.
(1)a=______,b=______;
(2)用文字說(shuō)明點(diǎn)N坐標(biāo)的實(shí)際意義;
(3)當(dāng)t為何值時(shí),y的值為2cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這5個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)問(wèn)題情景:某學(xué)校數(shù)學(xué)學(xué)習(xí)小組在討論“隨機(jī)擲二枚均勻的硬幣,得到一正一反的概率是多少”時(shí),小聰說(shuō):隨機(jī)擲二枚均勻的硬幣,可以有“二正、一正一反、二反”三種情況,所以,P(一正一反)=;小穎反駁道:這里的“一正一反”實(shí)際上含有“一正一反,一反一正”二種情況,所以P(一正一反)=.
⑴ 的說(shuō)法是正確的.
⑵為驗(yàn)證二人的猜想是否正確,小聰與小穎各做了100次實(shí)驗(yàn),得到如下數(shù)據(jù):
計(jì)算:小聰與小穎二人得到的“一正一反”的頻率分別是多少?從他們的實(shí)驗(yàn)中,你能得
到“一正一反”的概率是多少嗎?
⑶對(duì)概率的研究而言小聰與小穎兩位同學(xué)的實(shí)驗(yàn)說(shuō)明了什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com