【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點P從點A出發(fā)沿AB以3cm/s的速度向點B移動(不與點A,B重合);同時點Q從點C出發(fā)沿CD以2cm/s的速度向點D移動(不與點C、D重合),經過幾秒,△PDQ為直角三角形?說明理由.
【答案】經過2s或s或s時,△DPQ為直角三角形,理由見解析
【解析】
根據題意分當∠DPQ=90°時或當∠DQP=90°時兩種情況進一步分析討論即可.
解:經過2s或s或s時,△DPQ為直角三角形,理由如下:
∵點P不與點A重合,
∴∠PDQ≠90°,
∴△DPQ為直角三角形分兩種情況,設運動時間為x秒,
當∠DPQ=90°時,△DPQ為直角三角形,
過點Q作QM⊥AB于M,如圖所示:
則四邊形BCQM為矩形,
∴AP=3xcm,BM=CQ=2xcm,則PM=(16﹣5x)cm,DQ=(16﹣2x)cm,
∴(16﹣5x)2+62+(3x)2+62=(16﹣2x)2,
解得:x1=2,x2=;
②當∠DQP=90°時,AP+CQ=16,
所以3x+2x=16,
解得:x=,
綜上可知:經過2s或s或s時,△DPQ為直角三角形.
科目:初中數學 來源: 題型:
【題目】如圖,∠MAN=30°,點O為邊AN上一點,以O為圓心,4為半徑
作⊙O交AN于D、E兩點.
⑴ 當⊙O與AM相切時,求AD的長;
⑵ 如果AD=2,那么AM與⊙O又會有怎樣的位置關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面內直角坐標系中,直線y=-x+6分別于x軸、y軸交于A、B兩點,點C與點A關于y軸對稱,點E為線段OB上一動點(不與O、B重合),CE的延長線與AB交于點D,過A、D、E三點的圓與y軸交于點F
(1)求A、B、C三點的坐標
(2)求證:BE·EF=DE·AE
(3)若tan∠BAE=,求點F的坐標
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,G為AD上一點,連接BG,CG,作CE⊥BG于點E,連接ED交GC于點F.
(1)如圖1,若點G為AD的中點,則線段BG與CG有何數量關系?請說理由.
(2)如圖2,若點E恰好為BG的中點,且AB=3,AG=k(0<k<3),求的值(用含k的代數式表示);
(3)在(2)有條件下,若M、N分別為GC、EC上的任意兩點,連接NF、NM,當k=時,求NF+NM的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺攝制組乘船往返于A碼頭和B碼頭進行拍攝,在A、B兩碼頭間設置拍攝中心C.在往返過程中,假設船在A、B、C處均不停留,船離開B碼頭的距離s(千米)與航行的時間t(小時)之間的函數關系式如圖所示.根據圖象信息,解答下列問題:
(1)求船從B碼頭返回A碼頭時的速度及返回時s關于t的函數表達式.
(2)求水流的速度.
(3)若拍攝中心C設在離A碼頭12千米處,攝制組在拍攝中心分兩組拍攝,其中一組乘橡皮艇漂流到B碼頭處,另一組同時乘船到達A碼頭后馬上返回,求兩攝制組相遇時離拍攝中心C的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形中,,點在邊上,過點作的平行線,交于點,易得矩形.將矩形繞著點逆時針旋轉,使點的對應點落在邊上,點的對應點落在邊上,的對應邊交于點.
(1)求證:;(提示:連接,)
(2)當旋轉角為30°時,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數根.其中正確結論的個數為( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com