【題目】已知拋物線分別是的對邊。

1)求證:該拋物線與軸必有兩個(gè)交點(diǎn);

2)設(shè)拋物線與軸的兩個(gè)交點(diǎn)為,頂點(diǎn)為 ,已知的周長為,求拋物線的解析式;

3)設(shè)直線與拋物線交于點(diǎn),與軸交于點(diǎn),拋物線與軸交于點(diǎn),若拋物線的對稱軸為的面積之比為,試判斷三角形的形狀,并證明你的結(jié)論。

【答案】1)見解析;(2;(3)等邊三角形.

【解析】

1)根據(jù)一元二次方程根的判別式和三角形的三邊關(guān)系可得,即方程有兩個(gè)不相等的實(shí)數(shù)根,

2)利用周長的和為10,頂點(diǎn)的縱坐標(biāo)比上拋物線與x軸的右邊交點(diǎn)橫坐標(biāo)與頂點(diǎn)橫坐標(biāo)的差的值為正切值;解方程組求出(a+b)的值和c的值;代入解析式即可

3)聯(lián)立方程組可得,如圖,設(shè),根據(jù)三角形的面積關(guān)系可得,結(jié)合韋達(dá)定理可得,所以三角形是等邊三角形.

1)證明:在關(guān)于的一元二次方程中,

的邊長,

,方程有兩個(gè)不相等的實(shí)數(shù)根,

拋物線軸必有兩個(gè)交點(diǎn)

2)解:由,得,

設(shè)拋物線的對稱軸交軸于,如圖,

,

,

解得,則,

拋物線的解析式為: ,

3)解:由

,

由題意,得,

如圖,設(shè)

,得

,

由(3)得

由(2)得,

,

由(1)得,即,

為等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】食品安全受到全社會(huì)的廣泛關(guān)注,濟(jì)南市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩份尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角為_____.

2)請補(bǔ)全條形統(tǒng)計(jì)圖.

3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對食品安全知識達(dá)到了解基本了解程度的總?cè)藬?shù).

4)若從對食品安全知識達(dá)到了解程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

【答案】160;90°;(2)補(bǔ)圖見解析;(3300;(4

【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)用總?cè)藬?shù)乘以了解基本了解程度的人數(shù)所占的比例,即可求出達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.

詳解:(16090°.

2)補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示.

3)對食品安全知識達(dá)到了解基本了解的學(xué)生所占比例為,由樣本估計(jì)總體,該中學(xué)學(xué)生中對食品安全知識達(dá)到了解基本了解程度的總?cè)藬?shù)為.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情況一共12種,其中選中1個(gè)男生和1個(gè)女生的情況有8種,所以恰好選中1個(gè)男生和1個(gè)女生的概率是.

點(diǎn)睛:本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運(yùn)用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.

型】解答
結(jié)束】
24

【題目】為響應(yīng)國家全民閱讀的號召,某社區(qū)鼓勵(lì)居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計(jì)每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800.

1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.

2)已知2017年該社區(qū)居民借閱圖書人數(shù)有1350人,預(yù)計(jì)2018年達(dá)到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設(shè)2018年的人均借閱量比2017年增長a%,求a的值至少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BDCE是角平分線,AMBD于點(diǎn)MANCE于點(diǎn)N.△ABC的周長為30,BC12.則MN的長是( )

A. 15B. 9C. 6D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC的中點(diǎn)為O,過點(diǎn)O,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AECF

1)求證:四邊形AECF是菱形;

2)若,,請直接寫出EF的長為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=30°,AB=4.若動(dòng)點(diǎn)D在線段AC上(不與點(diǎn)A、C重合),過點(diǎn)DDEACAB邊于點(diǎn)E.點(diǎn)A關(guān)于點(diǎn)D的對稱點(diǎn)為點(diǎn)F,以FC為半徑作⊙C,當(dāng)DE=_______時(shí),⊙C與直線AB相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx2)(0≤x≤2)記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°C3,交x軸于點(diǎn)A3…如此進(jìn)行下去,則C2019的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線Ly=﹣x2+bx+c經(jīng)過坐標(biāo)原點(diǎn),與它的對稱軸直線x2交于A點(diǎn).

1)直接寫出拋物線的解析式;

2)⊙Ax軸相切,交y軸于B、C點(diǎn),交拋物線L的對稱軸于D點(diǎn),恒過定點(diǎn)的直線ykx2k+8k0)與拋物線L交于M、N點(diǎn),AMN的面積等于2,試求:

①弧BC的長;

k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.

(1)寫出mn之間的關(guān)系式;

(2)當(dāng)⊙P與兩坐標(biāo)軸都相切時(shí),求出⊙P的半徑;

(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時(shí),求出m、n的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓上一點(diǎn),,DHAB于點(diǎn)HAC分別交BD、DHE、F

1)已知AB10AD6,求AH

2)求證:DFEF

查看答案和解析>>

同步練習(xí)冊答案