如圖:AE平分∠DAC,∠DAC=120°,∠C=60°,AE與BC平行嗎?為什么?

答:平行.
理由:∵∠DAC=120°,AE平分∠DAC,(4分)
∴∠EAC=60°,(5分)
又∵∠C=60°,(6分)
∴∠EAC=∠C,(7分)
∴AE與BC平行.(8分)
分析:由AE平分∠DAC,∠DAC=120°,即可求得∠EAC=60°,又由∠C=60°,根據(jù)內錯角相等,兩直線平行即可求得AE與BC平行.
點評:此題考查了平行線的判定定理與角平分線的定義.注意掌握內錯角相等,兩直線平行定理是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若DE=4,AD=6,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明嘗試著將矩形紙片ABCD(如圖①,AD>CD)沿過A點的直線折疊,使得B點落在AD邊上的點F處,折痕為AE(如圖②);再沿過D點的直線折疊,使得C點落在DA邊上的點N處,E點落在AE邊上的點M處,折痕為DG(如圖③).如果第二次折疊后,M點正好在∠NDG的平分線上,那么矩形ABCD長與寬的比值為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,F(xiàn)E⊥BC”,其它條件不變,求∠DFE的度數(shù);
(3)如圖③,若把“AE⊥BC”變成“AE平分∠BEC”,其它條件不變,∠DAE的大小是否變化,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,F(xiàn)E⊥BC”,其它條件不變,求∠DFE的度數(shù);
(3)如圖③,若把“AE⊥BC”變成“AE平分∠BEC”,其它條件不變,∠DAE的大小是否變化,并請說明理由.

查看答案和解析>>

同步練習冊答案