【題目】完成以下證明,并在括號內(nèi)填寫理由.

已知:如圖所示,∠1=∠2,∠A=∠3.

求證:∠ABC+∠4+∠D=180°.

證明:∵∠1=∠2

  

∴∠A=∠4(

ABC+∠BCE=180°(

即∠ABC+∠ACB+∠4=180°

∵∠A=∠3

∴∠3=

∴∠ACB=∠D

∴∠ABC+∠4+∠D=180°

【答案】答案見解析

【解析】試題分析:根據(jù)題意,結(jié)合圖形,由平行線的判定與性質(zhì)可填空.

試題解析:證明:∵∠1=∠2

AB CE  內(nèi)錯角相等,兩直線平行

∴∠A=∠4( 兩直線平行,內(nèi)錯角相等

ABC+∠BCE=180°( 兩直線平行,同旁內(nèi)角互補

即∠ABC+∠ACB+∠4=180°

∵∠A=∠3

∴∠3= ∠4

AC DE

∴∠ACB=∠D 兩直線平行,同位角相等

∴∠ABC+∠4+∠D=180°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平陽中學(xué)長方形足球場的周長為310米,長比寬多25米,問這個足球場的長和寬分別是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點A順時針旋轉(zhuǎn)到Rt△ADE的位置,點E在斜邊AB上,連結(jié)BD,過點D作DF⊥AC于點F.

(1)如圖1,若點F與點A重合,求證:AC=BC;

(2)若∠DAF=∠DBA,①如圖2,當(dāng)點F在線段CA的延長線上時,判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由;

②當(dāng)點F在線段CA上時,設(shè)BE=x,請用含x的代數(shù)式表示線段AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知:ABCD,點E,F分別在ABCD上,且OEOF

(1)求證:∠1+∠2=90°;

(2)如圖2,分別在OE,CD上取點G,H,使FO平分∠CFG,EO平分∠AEH,求證:FGEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2﹣2ab+b2﹣c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件是隨機事件的是(

A. 畫一個三角形,其內(nèi)角和是180°

B. 任意畫一個四邊形,其周長與對角線的和相等

C. 任取一個實數(shù),與其相反數(shù)之和為0

D. 外觀相同的10件同種產(chǎn)品中有2件是不合格產(chǎn)品,現(xiàn)從中抽取1件即為合格品

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 y 2 x 1成正比例,且 x 3 y 4 。

1)求 y x 之間的函數(shù)關(guān)系式;

2)當(dāng) y 1時,求 x 的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,AB=BC,BC=10,BCD=60°,兩頂點B、D分別在平面直角坐標(biāo)系的y軸、x軸的正半軸上滑動,連接OA,則OA的長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】無論a取何值,關(guān)于x的函數(shù)y=﹣x+a2+1的圖象都不經(jīng)過( 。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

同步練習(xí)冊答案