【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D,直線DC與AB的延長線相交于P.弦CE平分∠ACB,交直徑AB于點(diǎn)F,連結(jié)BE.
(1)求證:AC平分∠DAB;
(2)探究線段PC,PF之間的大小關(guān)系,并加以證明;
(3)若tan∠CEB= ,BE=5 ,求AC、BC的長.

【答案】
(1)解:如圖1,連接OC,

∵OA=OC,

∴∠OAC=∠OCA.

∵PC是⊙O的切線,AD⊥CD,

∴∠OCP=∠D=90°,

∴OC∥AD.

∴∠CAD=∠OCA=∠OAC.

即AC平分∠DAB.


(2)解:PC=PF.

理由:∵AB是直徑,

∴∠ACB=90°,

∴∠PCB+∠ACD=90°

又∵∠CAD+∠ACD=90°,

∴∠CAB=∠CAD=∠PCB.

又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.

∴∠PFC=∠PCF.

∴PC=PF.


(3)解:如圖2,連接AE.∵∠ACE=∠BCE,

,

∴AE=BE.

又∵AB是直徑,

∴∠AEB=90°.AB= BE=10,

∵tan∠CEB=tan∠CAB= ,

=

設(shè)BC=3x,則CA=4x,

在Rt△ABC中,(3x)2+(4x)2=100

解得x=﹣2(舍)或x=2,

∴BC=6,AC=8.


【解析】(1)先判斷出∠OAC=∠OCA,再判斷出OC∥AD,即可得出結(jié)論;(2)先判斷出∠CAD+∠ACD=90°,進(jìn)而得出∠PFC=∠PCF即可得出結(jié)論;(3)先求出AB=10,再找出3CA=4BC,最后用勾股定理即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,分別在AB,BC的延長線上截取點(diǎn)G,H,使BG=BH,延長ACGH于點(diǎn)K,且AK=KG,則∠BAC的大小等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,∠1=2,∠3=4

1)求證:ADBE;

2)若∠B=3=22,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測得OA=OBOC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC,垂足為D,點(diǎn)EAB上,EFBC,垂足為F

(1)ADEF平行嗎?為什么?

(2)如果∠1=∠2,且∠3115°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié),在大明湖舉行第七屆會(huì)民健身運(yùn)動(dòng)會(huì)龍舟比賽中,甲、乙兩隊(duì)在500米的賽道上,所劃行的路程y(m)與時(shí)間x(min)之間的函數(shù)關(guān)系如圖所示,下列說法,其中正確的有(  )

乙隊(duì)比甲隊(duì)提前0.25min到達(dá)終點(diǎn);

0.5min后,乙隊(duì)比甲隊(duì)每分鐘快40m;

當(dāng)乙隊(duì)劃行110m時(shí),此時(shí)落后甲隊(duì)15m;

自1.5min開始,甲隊(duì)若要與乙隊(duì)同時(shí)到達(dá)終點(diǎn),甲隊(duì)的速度需要提高到260m/min.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)計(jì)算:( ﹣1)0+2sin30°﹣( 1+|﹣2017|;
(2)如圖,在△ABC中,已知∠ABC=30°,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)50°后得到△A1BC1 , 若∠A=100°,求證:A1C1∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)中學(xué)現(xiàn)有學(xué)生2870人,學(xué)校為了進(jìn)一步豐富學(xué)生課余生活,擬調(diào)查各興趣小組活動(dòng)情況,為此校學(xué)生會(huì)委托小容、小易進(jìn)行一次隨機(jī)抽樣調(diào)查.根據(jù)采集到的數(shù)據(jù),小容繪制的統(tǒng)計(jì)圖1,小易繪制的統(tǒng)計(jì)圖2(不完整)如下: 請(qǐng)你根據(jù)統(tǒng)計(jì)圖1、2中提供的信息,

解答下列問題:
(1)寫出2條有價(jià)值信息(不包括下面要計(jì)算的信息);
(2)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請(qǐng)將小易畫的統(tǒng)計(jì)圖中的“體育”部分的圖形補(bǔ)充完整;
(3)愛好“書畫”的人數(shù)占被調(diào)查人數(shù)的百分?jǐn)?shù)是多少?估計(jì)實(shí)驗(yàn)中學(xué)現(xiàn)有的學(xué)生中,有多少人愛好“書畫”?

查看答案和解析>>

同步練習(xí)冊(cè)答案