如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
的圖象交于A(-3,1)、B(2,n)兩點(diǎn),直線AB分別交x軸、y軸于D、C兩點(diǎn).
(1)求上述反比例函數(shù)和一次函數(shù)的解析式.
(2)根據(jù)圖象回答:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值


???????????????
分析:(1)把A(-3,1)代入y=
m
x
求出m=-3,得出反比例函數(shù)的解析式,把B(2,n)代入反比例函數(shù)的解析式求出n,得出B的坐標(biāo),把A、B的坐標(biāo)代入一次函數(shù)的解析式得出方程組,求出方程組的解即可;
(2)根據(jù)圖形和A、B的橫坐標(biāo)即可得出答案.
解答:解:(1)把A(-3,1)代入y=
m
x
得:m=-3,
即反比例函數(shù)的解析式為y=-
3
x
,
把B(2,n)代入得:n=-
3
2

即B(2,-
3
2
),
把A、B的坐標(biāo)代入一次函數(shù)的解析式得:
1=-3k+b
-
3
2
=2k+b

解得:k=-
1
2
,b=-
1
2

即一次函數(shù)的解析式是y=-
1
2
x-
1
2


(2)當(dāng)x<-3或0<x<2時,一次函數(shù)的值大于反比例函數(shù)的值.
點(diǎn)評:本題考查了一次函數(shù)和反比例函數(shù)的交點(diǎn)問題,用待定系數(shù)法求出一次函數(shù)和反比例函數(shù)的解析式等知識點(diǎn)的應(yīng)用,主要考查學(xué)生的計算能力和觀察圖形的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)A.當(dāng)y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案