【題目】在平面直角坐標(biāo)系xOy中,拋物線(m>0)與x軸的交點為AB

1)求拋物線的頂點坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.

當(dāng)m1時,求線段AB上整點的個數(shù);

若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個整點,結(jié)合函數(shù)的圖象,求m的取值范圍.

【答案】(1)(1,-1);(2)3;

【解析】

試題分析:(1)將拋物線表達(dá)式變?yōu)轫旤c式,則拋物線頂點坐標(biāo)為(1,-1);

2m=1時,拋物線表達(dá)式為,因此A、B的坐標(biāo)分別為(0,0)和(2,0),則線段AB上的整點有(0,0),(1,0),(2,0)共3個;

拋物線頂點為(1-1),則由線段AB之間的部分及線段AB所圍成的區(qū)域的整點的縱坐標(biāo)只能為-1或者0,所以即要求AB線段上(含AB兩點)必須有5個整點;又有拋物線表達(dá)式,令y=0,則,得到A、B兩點坐標(biāo)分別為(,0),(,0),即5個整點是以(1,0)為中心向兩側(cè)分散,進(jìn)而得到,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)求點C的坐標(biāo)及AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結(jié)BD.

(1)求證:∠A=∠BDC;

(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當(dāng)DM=1時,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B、∠C的平分線相交于F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論:①△BDF、△CEF都是等腰三角形; ②DE=BD+CE;③△ADE的周長為AB+AC;④BD=CE.其中正確的是(
A.③④
B.①②
C.①②③
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)的圖象,其對稱軸為x=1,下列結(jié)論:①abc0;②2a+b=0;③4a+2b+c0;④若(,),(,)是拋物線上兩點,則其中結(jié)論正確的是(

A.①② B.②③ C.②④ D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(0,4),B(8,0),C(8,6)三點.

(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項式bx2+2abx+a2b分解因式的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,設(shè)運動時間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當(dāng)t為何值時,四邊形ACNM的面積最?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項式 2xy2-xy-1是______次三項式.

查看答案和解析>>

同步練習(xí)冊答案