【題目】如圖在平行四邊形ABCD中,E是BC上點(diǎn),AE與BD相交于點(diǎn)F.
(1)ΔADF與ΔEBF相似嗎?請(qǐng)說明理由;
(2)如果E是BC的中點(diǎn),那么AF與EF有怎樣的數(shù)量關(guān)系?為什么?
【答案】(1)相似,見解析; (2)AF=2EF,見解析
【解析】
(1)根據(jù)平行四邊形的性質(zhì)可證△BEF∽△DAF;
(2)根據(jù)相似三角形的性質(zhì)得BE:DA= EF:AF,再根據(jù)點(diǎn)E是邊BC上的的中點(diǎn),得出BE:BC的值,即可求出結(jié)果.
解:(1)ABCD是平行四邊形,
∴BC∥AD,BC=AD
∴△BEF∽△DAF;
(2)根據(jù)△BEF∽△DAF
∴BE:DA= EF:AF
∵BC=AD
∴BF:DF=BE:BC,
∵點(diǎn)E是邊BC上的中點(diǎn),
∴BE:BC= 1:2
∴EF:AF = 1:2
即AF=2EF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙M與y軸相切于原點(diǎn)O,平行于x軸的直線交⊙M于P、Q兩點(diǎn),點(diǎn)P在點(diǎn)Q的右邊,若P點(diǎn)的坐標(biāo)為(-1,2),則Q點(diǎn)的坐標(biāo)是
A. (-4,2) B. (-4.5,2) C. (-5,2) D. (-5.5,2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】炎熱的夏天來臨之際.為了調(diào)查我校學(xué)生消防安全知識(shí)水平,學(xué)校組織了一次全校的消防安全知識(shí)培訓(xùn),培訓(xùn)完后進(jìn)行測試,在全校2400名學(xué)生中,分別抽取了男生,女生各15份成績,整理分析過程如下,請(qǐng)補(bǔ)充完整.
(收集數(shù)據(jù))
男生15名學(xué)生測試成績統(tǒng)計(jì)如下:
68,72,89,85,82,85,74,92,80,85,76,85,69,78,80
女生15名學(xué)生測試成績統(tǒng)計(jì)如下:(滿分100分)
82,88,83,76,73,78,67,81,82,80,80,86,82,80,82
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
組別 頻數(shù) | 65.5~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
男生 | 2 | 2 | 4 | 5 | 1 | 1 |
女生 | 1 | 1 | 5 | 6 | 2 | 0 |
(分析數(shù)據(jù))
(1)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:
班級(jí) | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
男生 | 80 | x | 80 | 45.9 |
女生 | 80 | 82 | y | 24.3 |
在表中:x=_____;y=_____.
(2)若規(guī)定得分在80分以上(不含80分)為合格,請(qǐng)估計(jì)全校學(xué)生中消防安全知識(shí)合格的學(xué)生有______人.
(3)通過數(shù)據(jù)分析得到的結(jié)論是女生掌握消防安全相關(guān)知識(shí)的整體水平比男生好,請(qǐng)從兩個(gè)方面說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種文具,進(jìn)價(jià)為5元/件.售價(jià)為6元/件時(shí),當(dāng)天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價(jià)每上漲0.5元,當(dāng)天的銷售量就減少5件.設(shè)當(dāng)天銷售單價(jià)統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價(jià)所在的范圍;
(3)若每件文具的利潤不超過,要想當(dāng)天獲得利潤最大,每件文具售價(jià)為多少元?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求∠APB的度數(shù).
為了解決本題,我們可以將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP′處,此時(shí)△ACP′≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出∠APB=__________;
(2)基本運(yùn)用
請(qǐng)你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點(diǎn)且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點(diǎn)O為Rt△ABC內(nèi)一點(diǎn),連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0),C(0,3).
(1)求二次函數(shù)的解析式;
(2)在圖中,畫出二次函數(shù)的圖象;
(3)根據(jù)圖象,直接寫出當(dāng)y≤0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊,分別在軸、軸的正半軸上,,是上一點(diǎn),,,,,分別是線段,上的兩個(gè)動(dòng)點(diǎn),且始終保持,若為等腰三角形,則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB、CD分別切⊙O于點(diǎn)A、B、E,CD分別交PA、PB于點(diǎn)C、D.下列關(guān)系:①PA=PB;②∠ACO=∠DCO;③∠BOE和∠BDE互補(bǔ);④△PCD的周長是線段PB長度的2倍.則其中說法正確的有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com