【題目】如圖,已知∠AOB=140,∠COE與∠EOD互余,OE平分∠AOD

1)若∠COE=38,求∠DOE和∠BOD的度數(shù);

2)設(shè)∠COE=α,∠BOD=β,請?zhí)骄?/span>αβ之間的數(shù)量關(guān)系.

【答案】1,;(2

【解析】

(1)根據(jù)互余的概念求出∠EOD,根據(jù)角平分線的定義求出∠AOD,結(jié)合圖形計算即可;
(2)根據(jù)互余的概念用α表示∠EOD,根據(jù)角平分線的定義求出∠AOD,結(jié)合圖形列式計算即可

(1)∵∠COE與∠EOD互余,,
∴∠EOD=90-38=52,
OE平分∠AOD,
∴∠AOD=2EOD =104
∴∠BOD=AOB-AOD=140-104=36,
故答案為:52,36;
(2)∵∠COE=,且∠COE與∠EOD互余,
,
OE平分∠AOD,

,

解得:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】老師在黑板上出了一道解方程的題:42x﹣1=1﹣3x+2),小明馬上舉手,要求到黑板上做,他是這樣做的:8x﹣4=1﹣3x+6,

8x﹣3x=1+6﹣4,

5x=3,

x=

老師說:小明解一元一次方程沒有掌握好,因此解題時出現(xiàn)了錯誤,請你指出他錯在哪一步:________(填編號),并說明理由.然后,你自己細心地解這個方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商從市場得知如下信息:

某品牌空調(diào)扇

某品牌電風扇

進價(元/臺)

700

100

售價(元/臺)

900

160

他現(xiàn)有40000元資金可用來一次性購進該品牌空調(diào)扇和電風扇共100臺,設(shè)該經(jīng)銷商購進空調(diào)扇臺,空調(diào)扇和電風扇全部銷售完后獲得利潤為.

1)求關(guān)于的函數(shù)解析式;

2)利用函數(shù)性質(zhì),說明該經(jīng)銷商如何進貨可獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,C=90°,AC=12,BC=9,AB=15,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒3個單位,設(shè)運動的時間為t.

1)當t=______時,CPABC的面積分成相等的兩部分;

2)當t=5時,CPABC分成的兩部分面積之比是SAPCSBPC=______

3)當t=______時,BPC的面積為18.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,有一長方形的空地,長為米,寬為米,建筑商把它分成甲、乙、丙三部分,甲和乙為正方形.現(xiàn)計劃甲建筑成住宅區(qū),乙建成商場丙開辟成公園.

請用含的代數(shù)式表示正方形乙的邊長; ;

若丙地的面積為平方米,請求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進行兩次折疊,展平后,得折痕AD,BE(如圖①),點O為其交點.

(1)探求AOOD的數(shù)量關(guān)系,并說明理由;

(2)如圖②,若P,N分別為BE,BC上的動點.

Ⅰ)當PN+PD的長度取得最小值時,求BP的長度;

Ⅱ)如圖③,若點Q在線段BO上,BQ=1,則QN+NP+PD的最小值=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上有A,B,C三個點,分別表示有理數(shù)﹣24,﹣10,10,動點PA出發(fā),以每秒4個單位長度的速度向終點C移動,設(shè)移動時間為t秒.

(1)用含t的代數(shù)式表示點PA的距離:PA=   ;點P對應的數(shù)是   

(2)動點Q從點B出發(fā),以每秒1個單位長度的速度向終點C移動,若P、Q同時出發(fā),求:當點P運動多少秒時,點P和點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,按如下步驟作圖:①以點A為圓心,AB長為半徑畫;②以點C為圓心,CB長為半徑畫弧,兩弧相交于點D;③連結(jié)BD,與AC交于點E,連結(jié)AD,CD

1)填空:△ABC≌△ ACBD的位置關(guān)系是

2)如圖2,當AB=BC時,猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論.

3)在(2)的條件下,若AC=8cm,BD=6cm,則點BAD的距離是 cm,若將四邊形ABCD通過割補,拼成一個正方形,那么這個正方形的邊長為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2011貴州安順,2310分)如圖,已知反比例函數(shù)的圖像經(jīng)過第二象限內(nèi)的點A(-1,m),ABx軸于點BAOB的面積為2若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)的圖象上另一點Cn,一2)

求直線y=ax+b的解析式;

設(shè)直線y=ax+bx軸交于點M,求AM的長

查看答案和解析>>

同步練習冊答案