【題目】某公司經(jīng)營(yíng)楊梅業(yè)務(wù),以3萬(wàn)元/噸的價(jià)格買(mǎi)入楊梅后,分揀成A、B兩類(lèi),A類(lèi)楊梅包裝后直接銷(xiāo)售,包裝成本為1萬(wàn)元/噸,它的平均銷(xiāo)售價(jià)格y(萬(wàn)元/噸)與銷(xiāo)售數(shù)量x(x≥2,單位:噸)之間的函數(shù)關(guān)系如圖;B類(lèi)楊梅深加工后再銷(xiāo)售,深加工總費(fèi)用s(萬(wàn)元)與加工數(shù)量t(噸)之間的函數(shù)關(guān)系是s=12+3t,平均銷(xiāo)售價(jià)格為9萬(wàn)元/噸.
(1)A類(lèi)楊梅的銷(xiāo)售量為5噸時(shí),它的平均銷(xiāo)售價(jià)格是每噸多少萬(wàn)元?
(2)若該公司收購(gòu)10噸楊梅,其中A類(lèi)楊梅有4噸,則經(jīng)營(yíng)這批楊梅所獲得的毛利潤(rùn)(w)為多少萬(wàn)元?(毛利潤(rùn)=銷(xiāo)售總收入﹣經(jīng)營(yíng)總成本)
(3)若該公司收購(gòu)20噸楊梅,要使該公司獲得30萬(wàn)元毛利潤(rùn),求直銷(xiāo)的A類(lèi)楊梅有多少?lài)崳?/span>
【答案】(1)9萬(wàn)元;(2)30萬(wàn)元;(3)18噸.
【解析】試題分析:(1)用待定系數(shù)法求得y與x的函數(shù)解析式,把x=5代入即可;
(2)根據(jù)“毛利潤(rùn)=銷(xiāo)售總收入-經(jīng)營(yíng)總成本”計(jì)算即可求得結(jié)論;
(3)設(shè)銷(xiāo)售A類(lèi)楊梅x噸,則銷(xiāo)售B類(lèi)楊梅(20﹣x)噸,分別表示出A、B兩種的利潤(rùn),繼而表示出總利潤(rùn),根據(jù)x的取值范圍分別進(jìn)行計(jì)算即可得.
試題解析:(1)設(shè)y=kx+b(k≠0),把x=2時(shí),y=12,x=8時(shí),y=6
得: , 解得: , ∴y=﹣x+14(2≤x≤8),
∴x=5時(shí),y=9,
答:A類(lèi)楊梅的銷(xiāo)售量為5噸時(shí),它的平均銷(xiāo)售價(jià)格是每噸9萬(wàn)元;
(2)若該公司收購(gòu)10噸楊梅,其中A類(lèi)楊梅有4噸,則B類(lèi)楊梅有6噸,
易得:WA=(10﹣3﹣1)×4=24(萬(wàn)元), WB=6×(9﹣3)﹣(12+3×6)=6(萬(wàn)元),
∴W=24+6=30(萬(wàn)元),
答:此時(shí)經(jīng)營(yíng)這批楊梅所獲得的毛利潤(rùn)w為30萬(wàn)元;
(3)設(shè)銷(xiāo)售A類(lèi)楊梅x噸,則銷(xiāo)售B類(lèi)楊梅(20﹣x)噸,
當(dāng)2≤x<8時(shí), wA=x(﹣x+14)﹣x=﹣x2+13x,
wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x,
∴w=wA+wB﹣3×20 =(﹣x2+13x)+(108﹣6x)﹣60 =﹣x2+7x+48;
當(dāng)x≥8時(shí),wA=6x﹣x=5x, wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x
∴w=wA+wB﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48,
當(dāng)2≤x<8時(shí),﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合題意,
當(dāng)x≥8時(shí),﹣x+48=30,解得x=18,
∴當(dāng)毛利潤(rùn)達(dá)到30萬(wàn)元時(shí),直接銷(xiāo)售的A類(lèi)楊梅有18噸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊的中線,過(guò)點(diǎn)A作BC的平行線,過(guò)點(diǎn)B作AD的平行線,兩線交于點(diǎn)E.
(1)求證:四邊形ADBE是矩形;
(2)連接DE,交AB與點(diǎn)O,若BC=8,AO=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,線段AB上有兩個(gè)點(diǎn)C、D,請(qǐng)計(jì)算圖中共有多少條線段?
(2)如果線段上有m個(gè)點(diǎn)(包括線段的兩個(gè)端點(diǎn)),則該線段上共有多少條線段?
(3)拓展應(yīng)用:8個(gè)班級(jí)參加學(xué)校組織的籃球比賽,比賽采用單循環(huán)制(即每?jī)蓚(gè)班級(jí)之間都要進(jìn)行一場(chǎng)比賽),那么一共要進(jìn)行多少場(chǎng)比賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結(jié)EM交AC于點(diǎn)N,連結(jié)DM、CM以下說(shuō)法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】①如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數(shù).
②先化簡(jiǎn)再求值:化簡(jiǎn):,x=2020.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初二開(kāi)展英語(yǔ)拼寫(xiě)大賽,愛(ài)國(guó)班和求知班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示:
(1)根據(jù)圖示填寫(xiě)下表:
班級(jí) | 中位數(shù)(分) | 眾數(shù)(分) | 平均數(shù)(分) |
愛(ài)國(guó)班 | 85 | ||
求知班 | 100 | 85 |
(2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)比較好?
(3)已知愛(ài)國(guó)班復(fù)賽成績(jī)的方差是70,請(qǐng)求出求知班復(fù)賽成績(jī)的方差,并說(shuō)明哪個(gè)班成績(jī)比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,E為CA延長(zhǎng)線上一點(diǎn),D為AB上一點(diǎn),F為外一點(diǎn)且連接DF,BF.
(1)當(dāng)的度數(shù)是多少時(shí),四邊形ADFE為菱形,請(qǐng)說(shuō)明理由:
(2)當(dāng)AB= 時(shí),四邊形ACBF為正方形(請(qǐng)直接寫(xiě)出)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD是正方形,點(diǎn)E、F分別在線段BC、DC上,∠BAE=30°.若線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與線段AF重合,則旋轉(zhuǎn)的角度是( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com