如圖,直線與y軸交于點(diǎn)A,與雙曲線在第一象限交于B、C兩點(diǎn),且AB•AC=4,則k=   
【答案】分析:先求出直線與x軸和y軸的兩交點(diǎn)D與A的坐標(biāo),根據(jù)OA與OD的長(zhǎng)度求出比值即可得到角ADO的正切值,利用特殊角的三角函數(shù)值即可求出角ADO的度數(shù),然后過B和C分別作y軸的垂線,分別交于E和F點(diǎn),聯(lián)立直線與雙曲線方程,消去y后得到關(guān)于x的一元二次方程,利用韋達(dá)定理即可表示出EB與FC的積,然后在直角三角形AEB中利用cos∠ABE表示出EB與AB的關(guān)系,同理在直角三角形AFC中,利用cos∠ACF表示出FC與AC的關(guān)系,根據(jù)AB•AC=4列出關(guān)于k的方程,求出方程的解即可得到k的值.
解答:解:對(duì)直線方程,令y=0,得到x=b,即直線與x軸的交點(diǎn)D的坐標(biāo)為(b,0),
令x=0,得到y(tǒng)=b,即A點(diǎn)坐標(biāo)為(0,b),
∴OA=b,OD=b,
∵在Rt△AOD中,tan∠ADO==,
∴∠ADO=30°,即直線y=-+b與x軸的夾角為30°,
∵直線y=-x+b與雙曲線y=在第一象限交于點(diǎn)B、C兩點(diǎn),
∴-x+b=,即-x2+bx-k=0,
由韋達(dá)定理得:x1x2==k,即EB•FC=k,
=cos30°=,
∴AB=EB,
同理可得:AC=FC,
∴AB•AC=(EB)(FC)=EB•FC=k=4,
解得:k=
點(diǎn)評(píng):本題考查函數(shù)圖象交點(diǎn)坐標(biāo)的求法,同時(shí)考查了三角函數(shù)的知識(shí),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年北京市朝陽(yáng)區(qū)九年級(jí)綜合練習(xí)(二)數(shù)學(xué)卷 題型:解答題

如圖,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.

(1)求點(diǎn)A、B的坐標(biāo)
(2)若點(diǎn)P在直線上,且橫坐標(biāo)為-2,
求過點(diǎn)P的反比例函數(shù)圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蕪湖市保沙中學(xué)九年級(jí)(上)第二次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,直線與x軸交于A點(diǎn),與y軸交于B點(diǎn),M是△ABO的內(nèi)心,函數(shù)的圖象經(jīng)過M點(diǎn),則k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年山東省淄博市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:選擇題

如圖,直線與x軸交于C,與y軸交于D,以CD為邊作矩形CDAB,點(diǎn)A在x軸上,雙曲線y=(k<0)經(jīng)過點(diǎn)B,則k的值為( )

A.1
B.3
C.4
D.-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年海南省?谑兄锌紨(shù)學(xué)模擬試卷(十六)(解析版) 題型:解答題

如圖,直線與y軸交于A點(diǎn),過點(diǎn)A的拋物線與直線交于另一點(diǎn)B,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0).
(1)求B點(diǎn)坐標(biāo)以及拋物線的函數(shù)解析式.
(2)動(dòng)點(diǎn)P在線段OC上,從原點(diǎn)O出發(fā)以每秒一個(gè)單位的速度向C運(yùn)動(dòng),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求線段MN的長(zhǎng)與t的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),MN的長(zhǎng)最大,最大值是多少?
(3)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O、點(diǎn)C重合的情況),連接CM、BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問對(duì)于所求的t的值,平行四邊形BCMN是否為菱形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年四川成都望子成龍學(xué)校九年級(jí)上期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線與y軸交于A點(diǎn),與反比例函數(shù)(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.

(1)求k的值;

(2)點(diǎn)N(a,1)是反比例函數(shù)(x>0)圖像上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PM+PN最小,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案