【題目】等腰△ABC中,AB=BC=8,∠ABC=120°,BE是∠ABC的平分線,交AC于E,點(diǎn)D是AB的中點(diǎn),連接DE,作EF∥AB于點(diǎn)F.
(1)求證四邊形BDEF是菱形;
(2)如圖以DF為一邊作矩形DFHG,且點(diǎn)E是此矩形的對(duì)稱中心,求矩形另一邊的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)FH=4.
【解析】
(1)先證明四邊形BDEF是平行四邊形,再根據(jù)DE=AB=BD,即可得到四邊形BDEF是菱形;
(2)先證明四邊形BEFH是平行四邊形,得到BE=FH,再根據(jù)BE=BC=4,即可得到FH=4.
解:(1)∵AB=BC,BE是∠ABC的平分線,
∴E是AC的中點(diǎn),且BE⊥AC,
又∵點(diǎn)D是AB的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BF,
又∵EF∥BD,
∴四邊形BDEF是平行四邊形,
又∵Rt△ABE中,點(diǎn)D是AB的中點(diǎn),
∴DE=AB=BD,
∴四邊形BDEF是菱形;
(2)連接EH,
∵點(diǎn)E是此矩形的對(duì)稱中心,
∴D,E,H在同一直線上,
∵DE∥BF,
∴EH∥BF,
∵AB=BC,BE是∠ABC的角平分線,
∴點(diǎn)E是AC的中點(diǎn),且BE⊥AC,
∵EF∥AB,
∴點(diǎn)F是BC的中點(diǎn),
∵點(diǎn)D是AB的中點(diǎn),
∴DF∥AC,
∴BE⊥DF,
又∵DFHG是矩形,
∴FH⊥DF,
∴BE∥FH,
∴四邊形BEHF是平行四邊形,
∴BE=FH,
∵∠ABC=120°,BE平分∠ABC,
∴∠EBF=60°,
又∵∠BEC=90°,
∴∠C=30°,
∴BE=BC=4,
∴FH=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,將這塊直角三角板按如圖所示位置擺放.等邊△ABC的頂點(diǎn)B與點(diǎn)O重合,BC邊落在OM上,點(diǎn)A恰好落在斜邊MN上,將等邊△ABC從圖1的位置沿OM方向以每秒1個(gè)單位長(zhǎng)度的速度平移,邊AB,AC分別與斜邊MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為t(s)(0<t<6).
(1)等邊△ABC的邊長(zhǎng)為 ;
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng) 時(shí),MN垂直平分AB;
(3)當(dāng)0<t<6時(shí),求直角三角板OMN與等邊△ABC重疊部分的面積S與時(shí)間t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若三個(gè)非零實(shí)數(shù)x,y,z滿足:只要其中一個(gè)數(shù)的倒數(shù)等于另外兩個(gè)數(shù)的倒數(shù)的和,則稱這三個(gè)實(shí)數(shù)x,y,z構(gòu)成“和諧三組數(shù)”.
(1)實(shí)數(shù)1,2,3可以構(gòu)成“和諧三組數(shù)”嗎?請(qǐng)說(shuō)明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三點(diǎn)均在函數(shù)y=(k為常數(shù),k≠0)的圖象上,且這三點(diǎn)的縱坐標(biāo)y1,y2,y3構(gòu)成“和諧三組數(shù)”,求實(shí)數(shù)t的值;
(3)若直線y=2bx+2c(bc≠0)與x軸交于點(diǎn)A(x1,0),與拋物線y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)兩點(diǎn).
①求證:A,B,C三點(diǎn)的橫坐標(biāo)x1,x2,x3構(gòu)成“和諧三組數(shù)”;
②若a>2b>3c,x2=1,求點(diǎn)P(,)與原點(diǎn)O的距離OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明設(shè)計(jì)的“作三角形的高線”的尺規(guī)作圖過(guò)程.
已知:△ABC.
求作:BC邊上的高線.
作法:如圖,
①分別以A,B為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)D,E;
②作直線DE,與AB交于點(diǎn)F,以點(diǎn)F為圓心,FA長(zhǎng)為半徑畫(huà)圓,交CB的延長(zhǎng)線于點(diǎn)G;
③連接AG.
所以線段AG就是所求作的BC邊上的高線.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面證明.
證明:連接DA,DB,EA,EB,
∵DA=DB,
∴點(diǎn)D在線段AB的垂直平分線上( )(填推理的依據(jù)).
∵ = ,
∴點(diǎn)E在線段AB的垂直平分線上.
∴DE是線段AB的垂直平分線.
∴FA=FB.
∴AB是⊙F的直徑.
∴∠AGB=90°( )(填推理的依據(jù)).
∴AG⊥BC
即AG就是BC邊上的高線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的內(nèi)心,過(guò)點(diǎn)O作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論:①∠BOC=90°+∠A;②EF不可能是△ABC的中位線;③設(shè)OD=m,AE+AF=n,則S△AEF=mn;④以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)4的正方形ABCD中,E是邊BC的中點(diǎn),將△CDE沿直線DE折疊后,點(diǎn)C落在點(diǎn)F處,冉將其打開(kāi)、展平,得折痕DE。連接CF、BF、EF,延長(zhǎng)BF交AD于點(diǎn)G。則下列結(jié)論:①BG= DE;②CF⊥BG;③sin∠DFG= ;④S△DFG=.其中正確的有( )
A. 1個(gè)
B. 2個(gè)
C. 3個(gè)
D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具商店銷售功能相同的A、B兩種品牌的計(jì)算器,購(gòu)買2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156元;購(gòu)買3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元.
(1)求這兩種品牌計(jì)算器的單價(jià);
(2)學(xué)校開(kāi)學(xué)前夕,該商店對(duì)這兩種計(jì)算器開(kāi)展了促銷活動(dòng),具體辦法如下:A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器超出5個(gè)的部分按原價(jià)的七折銷售,設(shè)購(gòu)買x個(gè)A品牌的計(jì)算器需要y1元,購(gòu)買x(x>5)個(gè)B品牌的計(jì)算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)需要購(gòu)買50個(gè)計(jì)算器時(shí),買哪種品牌的計(jì)算器更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌手機(jī)去年每臺(tái)的售價(jià)y(元)與月份x之間滿足函數(shù)關(guān)系:y=﹣50x+2600,去年的月銷量p(萬(wàn)臺(tái))與月份x之間成一次函數(shù)關(guān)系,其中1﹣6月份的銷售情況如下表:
月份(x) | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 |
銷售量(p) | 3.9萬(wàn)臺(tái) | 4.0萬(wàn)臺(tái) | 4.1萬(wàn)臺(tái) | 4.2萬(wàn)臺(tái) | 4.3萬(wàn)臺(tái) | 4.4萬(wàn)臺(tái) |
(1)求p關(guān)于x的函數(shù)關(guān)系式;
(2)求該品牌手機(jī)在去年哪個(gè)月的銷售金額最大?最大是多少萬(wàn)元?
(3)今年1月份該品牌手機(jī)的售價(jià)比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對(duì)該手機(jī)以1月份價(jià)格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬(wàn)臺(tái).若今年2月份這種品牌手機(jī)的銷售額為6400萬(wàn)元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線系數(shù)”.
(1)任意拋物線都有“拋物線三角形”是______(填“真”或“假”)命題;
(2)若一條拋物線系數(shù)為[1,0,-2],則其“拋物線三角形”的面積為________;
(3)若一條拋物線系數(shù)為[-1,2b,0],其“拋物線三角形”是個(gè)直角三角形,求該拋物線的解析式;
(4)在(3)的前提下,該拋物線的頂點(diǎn)為A,與x軸交于O,B兩點(diǎn),在拋物線上是否存在一點(diǎn)P,過(guò)P作PQ⊥x軸于點(diǎn)Q,使得△BPQ∽△OAB,如果存在,求出P點(diǎn)坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com