如圖,以矩形OCPD的頂點(diǎn)O為原點(diǎn),它的兩條邊所在的直線分別為x軸和y軸建立直角坐標(biāo)系.以點(diǎn)P為圓心,PC為半徑的⊙Px軸的正半軸交于A、B兩點(diǎn),函數(shù)y=ax2+bx+4過(guò)A,B,C三點(diǎn)且AB=6.

(1)求⊙P的半徑R的長(zhǎng);

(2)若點(diǎn)E在y軸上,且△ACE是等腰三角形,試寫(xiě)出所有點(diǎn)E的坐標(biāo)

答案:
解析:

  (1)得C(0,4) 2分

  連接AP,利用垂徑定理AD=3,在Rt△ADP中得AP=5,即R=5 2分

  (2)得A(2,0) 2分

  E點(diǎn)坐標(biāo)4個(gè)E(0,-4),E(0,),E(0,),

  E(0,) 4分(每個(gè)1分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OCPD的頂點(diǎn)O為原點(diǎn),它的兩條邊所在的直線分別為x軸和y軸建立直角坐標(biāo)系.以點(diǎn)P為圓心,精英家教網(wǎng)PC為半徑的⊙P與x軸的正半軸交于A、B兩點(diǎn),若拋物線y=ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn),且AB=6.
(1)求⊙P的半徑R的長(zhǎng);
(2)求該拋物線的解析式并直接寫(xiě)出該拋物線與⊙P的第四個(gè)交點(diǎn)E的坐標(biāo);
(3)若以AB為直徑的圓與直線AC的交點(diǎn)為F,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:月考題 題型:解答題

如圖,以矩形OCPD的頂點(diǎn)O為原點(diǎn),它的兩條邊所在的直線分別為x軸和y軸建立直角坐標(biāo)系. 以點(diǎn)P為圓心,PC為半徑的⊙P與x軸的正半軸交于A、B兩點(diǎn),若拋物線y=ax2+bx+4經(jīng)過(guò)A, B, C三點(diǎn), 且AB=6.
(1)求⊙P的半徑R的長(zhǎng);
(2)求該拋物線的解析式并直接寫(xiě)出該拋物線與⊙P的第四個(gè)交點(diǎn)E的坐標(biāo);
(3)若以AB為直徑的圓與直線AC的交點(diǎn)為F,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》?碱}集(25):2.7 最大面積是多少(解析版) 題型:解答題

如圖,以矩形OCPD的頂點(diǎn)O為原點(diǎn),它的兩條邊所在的直線分別為x軸和y軸建立直角坐標(biāo)系.以點(diǎn)P為圓心,PC為半徑的⊙P與x軸的正半軸交于A、B兩點(diǎn),若拋物線y=ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn),且AB=6.
(1)求⊙P的半徑R的長(zhǎng);
(2)求該拋物線的解析式并直接寫(xiě)出該拋物線與⊙P的第四個(gè)交點(diǎn)E的坐標(biāo);
(3)若以AB為直徑的圓與直線AC的交點(diǎn)為F,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》?碱}集(26):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,以矩形OCPD的頂點(diǎn)O為原點(diǎn),它的兩條邊所在的直線分別為x軸和y軸建立直角坐標(biāo)系.以點(diǎn)P為圓心,PC為半徑的⊙P與x軸的正半軸交于A、B兩點(diǎn),若拋物線y=ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn),且AB=6.
(1)求⊙P的半徑R的長(zhǎng);
(2)求該拋物線的解析式并直接寫(xiě)出該拋物線與⊙P的第四個(gè)交點(diǎn)E的坐標(biāo);
(3)若以AB為直徑的圓與直線AC的交點(diǎn)為F,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》常考題集(27):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,以矩形OCPD的頂點(diǎn)O為原點(diǎn),它的兩條邊所在的直線分別為x軸和y軸建立直角坐標(biāo)系.以點(diǎn)P為圓心,PC為半徑的⊙P與x軸的正半軸交于A、B兩點(diǎn),若拋物線y=ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn),且AB=6.
(1)求⊙P的半徑R的長(zhǎng);
(2)求該拋物線的解析式并直接寫(xiě)出該拋物線與⊙P的第四個(gè)交點(diǎn)E的坐標(biāo);
(3)若以AB為直徑的圓與直線AC的交點(diǎn)為F,求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案