如圖,PA、PB是⊙O的切線,A、B是切點,點C是劣弧AB上的一個動點,若∠P=40°,則∠ACB的度數(shù)是( )

A.80°
B.110°
C.120°
D.140°
【答案】分析:連接OA,OB,在優(yōu)弧AB上任取一點D(不與A、B重合),連接BD,AD,如圖所示,由PA與PB都為圓O的切線,利用切線的性質得到OA與AP垂直,OB與BP垂直,在四邊形APBO中,根據(jù)四邊形的內角和求出∠AOB的度數(shù),再利用同弧所對的圓周角等于所對圓心角的一半求出∠ADB的度數(shù),再根據(jù)圓內接四邊形的對角互補即可求出∠ACB的度數(shù).
解答:解:連接OA,OB,在優(yōu)弧AB上任取一點D(不與A、B重合),
連接BD,AD,如圖所示:
∵PA、PB是⊙O的切線,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圓周角∠ADB與圓心角∠AOB都對弧AB,
∴∠ADB=∠AOB=70°,
又四邊形ACBD為圓內接四邊形,
∴∠ADB+∠ACB=180°,
則∠ACB=110°.
故選B
點評:此題考查了切線的性質,圓周角定理,圓內接四邊形的性質,以及四邊形的內角和,熟練掌握切線的性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA,PB是⊙O的切線,切點分別為A,B,且∠APB=50°,點C是優(yōu)弧
AB
上的一點,則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據(jù)圓的對稱性,寫出△PAB的三個正確的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點分別是A、B,點C是⊙O上異與點A、B的點,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習冊答案