【題目】如圖,數(shù)軸的原點(diǎn)為0,點(diǎn)A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)B對(duì)應(yīng)的數(shù)位1,AB=6,BC=2,動(dòng)點(diǎn)P、Q同時(shí)從A、C出發(fā),分別以每秒2個(gè)長度單位和每秒1個(gè)長度單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)
(1)求點(diǎn)A、C分別對(duì)應(yīng)的數(shù);
(2)求點(diǎn)P、Q分別對(duì)應(yīng)的數(shù)(用含t的式子表示)
(3)試問當(dāng)t為何值時(shí),OP=OQ?
【答案】
(1)解:∵點(diǎn)B對(duì)應(yīng)的數(shù)為1,AB=6,BC=2,
∴點(diǎn)A對(duì)應(yīng)的數(shù)是1﹣6=﹣5,點(diǎn)C對(duì)應(yīng)的數(shù)是1+2=3
(2)解:∵動(dòng)點(diǎn)P、Q分別同時(shí)從A、C出發(fā),分別以每秒2個(gè)單位和1個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),
∴點(diǎn)P對(duì)應(yīng)的數(shù)是﹣5+2t,
點(diǎn)Q對(duì)應(yīng)的數(shù)是3+t;
(3)解:①當(dāng)點(diǎn)P與點(diǎn)Q在原點(diǎn)兩側(cè)時(shí),若OP=OQ,則5﹣2t=3+t,
解得:t= ;
②當(dāng)點(diǎn)P與點(diǎn)Q在同側(cè)時(shí),若OP=OQ,則﹣5+2t=3+t,
解得:t=8;
當(dāng)t為 或8時(shí),OP=OQ
【解析】(1)根據(jù)點(diǎn)B對(duì)應(yīng)的數(shù)為1,AB=6,BC=2,得出點(diǎn)A對(duì)應(yīng)的數(shù)是1﹣6=﹣5,點(diǎn)C對(duì)應(yīng)的數(shù)是1+2=3.(2)根據(jù)動(dòng)點(diǎn)P、Q分別同時(shí)從A、C出發(fā),分別以每秒2個(gè)單位和1個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),表示出移動(dòng)的距離,即可得出對(duì)應(yīng)的數(shù);(3)分兩種情況討論:當(dāng)點(diǎn)P與點(diǎn)Q在原點(diǎn)兩側(cè)時(shí)和當(dāng)點(diǎn)P與點(diǎn)Q在同側(cè)時(shí),根據(jù)OP=OQ,分別列出方程,求出t的值即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)軸的相關(guān)知識(shí),掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“獻(xiàn)愛心”捐款活動(dòng)中,某校7名學(xué)生的捐款數(shù)如下(單位:元):5,8,6,8,5,10,8,這組數(shù)據(jù)的中位數(shù)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系中,已知點(diǎn)A(-4,2),B(-2,-2),以原點(diǎn)O為位似中心,把△ABO放大為原來的2倍,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用科學(xué)記算器計(jì)算銳角α的三角函數(shù)值時(shí),不能直接計(jì)算出來的三角函數(shù)值是( 。
A.cotα
B.tanα
C.cosα
D.sinα
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC= b2+ ab.
又∵S四邊形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)
∴ b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
請(qǐng)參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,適宜采用普查方式的是( )
A. 了解一批燈泡的使用壽命B. 了解外地游客對(duì)天柱山的印象
C. 了解本班同學(xué)早餐是否有喝牛奶的習(xí)慣D. 了解我國初中學(xué)生的視力情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作
法和證明);
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】代數(shù)式8x+5y可以表示很多意義,例如:若x表示蘋果每千克的錢數(shù),y表示香蕉每千克的錢數(shù),則8x+5y表示買8 kg蘋果和5 kg香蕉共花的錢數(shù).請(qǐng)你給8x+5y賦予另一種實(shí)際意義.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com